Department of Physics, Clemson University, Clemson, SC 29634, USA.
Sci Rep. 2016 Aug 17;6:31523. doi: 10.1038/srep31523.
Dyneins are important molecular motors involved in many essential biological processes, including cargo transport along microtubules, mitosis, and in cilia. Dynein motility involves the coupling of microtubule binding and unbinding to a change in the configuration of the linker domain induced by ATP hydrolysis, which occur some 25 nm apart. This leaves the accuracy of dynein stepping relatively inaccurate and susceptible to thermal noise. Using multi-scale modeling with a computational focusing technique, we demonstrate that the microtubule forms an electrostatic funnel that guides the dynein's microtubule binding domain (MTBD) as it finally docks to the precise, keyed binding location on the microtubule. Furthermore, we demonstrate that electrostatic component of the MTBD's binding free energy is linearly correlated with the velocity and run length of dynein, and we use this linearity to predict the effect of mutating each glutamic and aspartic acid located in MTBD domain to alanine. Lastly, we show that the binding of dynein to the microtubule is associated with conformational changes involving several helices, and we localize flexible hinge points within the stalk helices. Taken all together, we demonstrate that long range electrostatic interactions bring a level of precision to an otherwise noisy dynein stepping process.
动力蛋白是参与许多重要生物学过程的重要分子马达,包括货物沿微管的运输、有丝分裂和纤毛运动。动力蛋白的运动涉及微管结合和解离的耦合,这是由 ATP 水解诱导的连接域构象变化引起的,而这两者之间的距离约为 25nm。这使得动力蛋白的步移精度相对较低,容易受到热噪声的影响。我们使用多尺度建模和计算聚焦技术,证明微管形成了一个静电漏斗,引导动力蛋白的微管结合域(MTBD)最终停靠在微管上精确的、键合的位置。此外,我们证明了 MTBD 的结合自由能的静电分量与动力蛋白的速度和运行长度呈线性相关,我们利用这种线性关系来预测突变 MTBD 域中每个谷氨酸和天冬氨酸为丙氨酸对动力蛋白的影响。最后,我们表明动力蛋白与微管的结合与涉及多个螺旋的构象变化有关,并且我们确定了茎螺旋中的柔性铰链点。综上所述,我们证明了长程静电相互作用为原本嘈杂的动力蛋白步移过程带来了一定的精度。