Suppr超能文献

利用短波红外线对中耳病变进行成像。

Using the shortwave infrared to image middle ear pathologies.

作者信息

Carr Jessica A, Valdez Tulio A, Bruns Oliver T, Bawendi Moungi G

机构信息

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;

Otolaryngology-Head and Neck Surgery, University of Connecticut Health Center, Farmington, CT 06269; Otolaryngology-Head and Neck Surgery, Connecticut Children's Medical Center, Hartford, CT 06106

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9989-94. doi: 10.1073/pnas.1610529113. Epub 2016 Aug 22.

Abstract

Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1-2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope.

摘要

可视化不透明生物组织内部深处的结构是生物医学成像的核心挑战之一。可见光光学成像具有高分辨率和高灵敏度;然而,组织对光的散射和吸收将成像深度限制在表面特征。短波红外光(SWIR,1-2μm)成像具有可见光成像的许多优点,但组织中的光散射减少,提供了足够的光学穿透深度,以便对皮下组织特征进行无创询问。然而,这种方法的临床潜力在很大程度上尚未得到探索,因为直到最近,合适的探测器要么无法获得,要么成本过高。在这里,利用新出现的探测器技术,我们通过开发一种用于确定中耳病变的医用耳镜,展示了SWIR光在改善诊断方面的潜力。我们表明,SWIR耳镜有潜力提供与可见光鼓膜镜检查互补的有价值的诊断信息。我们表明,在健康成年人的耳朵中,SWIR光更深的组织穿透能力可以通过鼓膜更好地可视化中耳结构,包括听骨链、岬、圆窗龛和鼓索神经。此外,我们研究了检测中耳积液的潜力,这对中耳炎的诊断具有重要意义,中耳炎的过度诊断是抗生素耐药性增加的一个主要因素。中耳积液在1400至1550nm之间表现出强烈的光吸收,这使得在使用SWIR耳镜的模型中能够直接检测积液。此外,我们的设备很容易转化为临床应用,因为其人体工程学、视觉输出和操作与传统耳镜相似。

相似文献

1
Using the shortwave infrared to image middle ear pathologies.
Proc Natl Acad Sci U S A. 2016 Sep 6;113(36):9989-94. doi: 10.1073/pnas.1610529113. Epub 2016 Aug 22.
2
Initial findings of shortwave infrared otoscopy in a pediatric population.
Int J Pediatr Otorhinolaryngol. 2018 Nov;114:15-19. doi: 10.1016/j.ijporl.2018.08.024. Epub 2018 Aug 23.
4
Optical coherence tomography otoscope for imaging of tympanic membrane and middle ear pathology.
J Biomed Opt. 2024 Aug;29(8):086005. doi: 10.1117/1.JBO.29.8.086005. Epub 2024 Aug 20.
5
Virtual otoscopy for evaluating the inner ear with a fluid-filled tympanic cavity in dogs.
J Vet Sci. 2012 Dec;13(4):419-24. doi: 10.4142/jvs.2012.13.4.419.
6
Multi-color reflectance imaging of middle ear pathology in vivo.
Anal Bioanal Chem. 2015 May;407(12):3277-83. doi: 10.1007/s00216-015-8580-y. Epub 2015 Mar 10.
7
Short-Wave Infrared Fluorescence Chemical Sensor for Detection of Otitis Media.
ACS Sens. 2020 Nov 25;5(11):3411-3419. doi: 10.1021/acssensors.0c01272. Epub 2020 Nov 11.
9
Utility of a smartphone-enabled otoscope in the instruction of otoscopy and middle ear anatomy.
Eur Arch Otorhinolaryngol. 2019 Oct;276(10):2953-2956. doi: 10.1007/s00405-019-05559-6. Epub 2019 Jul 17.
10
Virtual CT otoscopy of the middle ear and ossicles in dogs.
Vet Radiol Ultrasound. 2008 Nov-Dec;49(6):545-50. doi: 10.1111/j.1740-8261.2008.00428.x.

引用本文的文献

1
Rigid Autofluorescence Imaging as a Tool for Identifying Cholesteatoma During Otologic Surgery: Initial Ex Vivo Findings.
Otolaryngol Head Neck Surg. 2025 Aug;173(2):461-467. doi: 10.1002/ohn.1274. Epub 2025 Apr 25.
3
Optical coherence tomography otoscope for imaging of tympanic membrane and middle ear pathology.
J Biomed Opt. 2024 Aug;29(8):086005. doi: 10.1117/1.JBO.29.8.086005. Epub 2024 Aug 20.
5
Advancing DIEP Flap Monitoring with Optical Imaging Techniques: A Narrative Review.
Sensors (Basel). 2024 Jul 10;24(14):4457. doi: 10.3390/s24144457.
7
Label-Free Optical Technologies for Middle-Ear Diseases.
Bioengineering (Basel). 2024 Jan 23;11(2):104. doi: 10.3390/bioengineering11020104.
9
Recent Advances in the HPPH-Based Third-Generation Photodynamic Agents in Biomedical Applications.
Int J Mol Sci. 2023 Dec 12;24(24):17404. doi: 10.3390/ijms242417404.

本文引用的文献

1
Through-skull fluorescence imaging of the brain in a new near-infrared window.
Nat Photonics. 2014 Sep;8(9):723-730. doi: 10.1038/nphoton.2014.166. Epub 2014 Aug 3.
2
Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization.
J Biomed Opt. 2015 Mar;20(3):030901. doi: 10.1117/1.JBO.20.3.030901.
3
Multi-color reflectance imaging of middle ear pathology in vivo.
Anal Bioanal Chem. 2015 May;407(12):3277-83. doi: 10.1007/s00216-015-8580-y. Epub 2015 Mar 10.
5
Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media.
Laryngoscope. 2015 Aug;125(8):E276-82. doi: 10.1002/lary.25141. Epub 2015 Jan 19.
7
Quantitative short-wave infrared multispectral imaging of in vivo tissue optical properties.
J Biomed Opt. 2014 Aug;19(8):086011. doi: 10.1117/1.JBO.19.8.086011.
10
An anatomically sound surgical simulation model for myringotomy and tympanostomy tube insertion.
Int J Pediatr Otorhinolaryngol. 2014 Mar;78(3):522-9. doi: 10.1016/j.ijporl.2013.12.036. Epub 2014 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验