Moustapha A, Pérétout P A, Rainey N E, Sureau F, Geze M, Petit J-M, Dewailly E, Slomianny C, Petit P X
INSERM U1124 'Toxicologie, Pharmacologie et Signalisation Cellulaire', Université Paris-Descartes, Centre Universitaire des Saints-Pères , Paris, France.
Université Pierre et Marie Curie-Paris 6, Laboratoire Jean Perrin , Paris, France.
Cell Death Discov. 2015 Oct 26;1:15017. doi: 10.1038/cddiscovery.2015.17. eCollection 2015.
Curcumin, a major active component of turmeric (Curcuma longa, L.), has anticancer effects. In vitro studies suggest that curcumin inhibits cancer cell growth by activating apoptosis, but the mechanism underlying these effects is still unclear. Here, we investigated the mechanisms leading to apoptosis in curcumin-treated cells. Curcumin induced endoplasmic reticulum stress causing calcium release, with a destabilization of the mitochondrial compartment resulting in apoptosis. These events were also associated with lysosomal membrane permeabilization and of caspase-8 activation, mediated by cathepsins and calpains, leading to Bid cleavage. Truncated tBid disrupts mitochondrial homeostasis and enhance apoptosis. We followed the induction of autophagy, marked by the formation of autophagosomes, by staining with acridine orange in cells exposed curcumin. At this concentration, only the early events of apoptosis (initial mitochondrial destabilization with any other manifestations) were detectable. Western blotting demonstrated the conversion of LC3-I to LC3-II (light chain 3), a marker of active autophagosome formation. We also found that the production of reactive oxygen species and formation of autophagosomes following curcumin treatment was almost completely blocked by N-acetylcystein, the mitochondrial specific antioxidants MitoQ10 and SKQ1, the calcium chelators, EGTA-AM or BAPTA-AM, and the mitochondrial calcium uniporter inhibitor, ruthenium red. Curcumin-induced autophagy failed to rescue all cells and most cells underwent type II cell death following the initial autophagic processes. All together, these data imply a fail-secure mechanism regulated by autophagy in the action of curcumin, suggesting a therapeutic potential for curcumin. Offering a novel and effective strategy for the treatment of malignant cells.
姜黄素是姜黄(Curcuma longa, L.)的主要活性成分,具有抗癌作用。体外研究表明,姜黄素通过激活细胞凋亡来抑制癌细胞生长,但其作用机制仍不清楚。在此,我们研究了姜黄素处理的细胞中导致细胞凋亡的机制。姜黄素诱导内质网应激导致钙释放,线粒体膜不稳定,从而导致细胞凋亡。这些事件还与溶酶体膜通透性增加和半胱天冬酶-8激活有关,由组织蛋白酶和钙蛋白酶介导,导致Bid裂解。截短的tBid破坏线粒体稳态并增强细胞凋亡。我们通过用吖啶橙对暴露于姜黄素的细胞进行染色,追踪以自噬体形成为标志的自噬诱导过程。在此浓度下,只能检测到细胞凋亡的早期事件(线粒体最初的不稳定及任何其他表现)。蛋白质免疫印迹法证明LC3-I转化为LC3-II(轻链3),这是活性自噬体形成的标志物。我们还发现,姜黄素处理后活性氧的产生和自噬体的形成几乎完全被N-乙酰半胱氨酸、线粒体特异性抗氧化剂MitoQ10和SKQ1、钙螯合剂EGTA-AM或BAPTA-AM以及线粒体钙单向转运体抑制剂钌红所阻断。姜黄素诱导的自噬未能挽救所有细胞,大多数细胞在初始自噬过程后经历II型细胞死亡。总之,这些数据表明在姜黄素的作用中存在一种由自噬调节的故障安全机制,提示姜黄素有治疗潜力。为恶性细胞的治疗提供了一种新颖有效的策略。