Suppr超能文献

正常扩散与反常扩散:基于量子碰撞动力学和玻尔兹曼输运理论的分析研究

Normal and Anomalous Diffusion: An Analytical Study Based on Quantum Collision Dynamics and Boltzmann Transport Theory.

作者信息

Mahakrishnan Sathiya, Chakraborty Subrata, Vijay Amrendra

机构信息

Department of Chemistry, Indian Institute of Technology Madras , Chennai 600036, India.

出版信息

J Phys Chem B. 2016 Sep 15;120(36):9608-20. doi: 10.1021/acs.jpcb.6b06380. Epub 2016 Sep 6.

Abstract

Diffusion, an emergent nonequilibrium transport phenomenon, is a nontrivial manifestation of the correlation between the microscopic dynamics of individual molecules and their statistical behavior observed in experiments. We present a thorough investigation of this viewpoint using the mathematical tools of quantum scattering, within the framework of Boltzmann transport theory. In particular, we ask: (a) How and when does a normal diffusive transport become anomalous? (b) What physical attribute of the system is conceptually useful to faithfully rationalize large variations in the coefficient of normal diffusion, observed particularly within the dynamical environment of biological cells? To characterize the diffusive transport, we introduce, analogous to continuous phase transitions, the curvature of the mean square displacement as an order parameter and use the notion of quantum scattering length, which measures the effective interactions between the diffusing molecules and the surrounding, to define a tuning variable, η. We show that the curvature signature conveniently differentiates the normal diffusion regime from the superdiffusion and subdiffusion regimes and the critical point, η = ηc, unambiguously determines the coefficient of normal diffusion. To solve the Boltzmann equation analytically, we use a quantum mechanical expression for the scattering amplitude in the Boltzmann collision term and obtain a general expression for the effective linear collision operator, useful for a variety of transport studies. We also demonstrate that the scattering length is a useful dynamical characteristic to rationalize experimental observations on diffusive transport in complex systems. We assess the numerical accuracy of the present work with representative experimental results on diffusion processes in biological systems. Furthermore, we advance the idea of temperature-dependent effective voltage (of the order of 1 μV or less in a biological environment, for example) as a dynamical cause of the perpetual molecular movement, which eventually manifests as an ordered motion, called the diffusion.

摘要

扩散是一种非平衡输运现象,它是单个分子微观动力学与其在实验中观测到的统计行为之间相关性的一种重要表现。我们在玻尔兹曼输运理论框架内,利用量子散射的数学工具对这一观点进行了深入研究。具体而言,我们提出以下问题:(a) 正常扩散输运如何以及何时会变为反常扩散?(b) 对于合理地解释特别是在生物细胞动态环境中观测到的正常扩散系数的大幅变化,系统的何种物理属性在概念上是有用的?为了表征扩散输运,我们类似于连续相变引入均方位移的曲率作为序参量,并使用量子散射长度的概念(它测量扩散分子与周围环境之间的有效相互作用)来定义一个调谐变量η。我们表明,曲率特征方便地将正常扩散区域与超扩散和亚扩散区域区分开来,并且临界点η = ηc明确地确定了正常扩散系数。为了解析求解玻尔兹曼方程,我们在玻尔兹曼碰撞项中使用散射振幅的量子力学表达式,并得到有效线性碰撞算子的一般表达式,这对各种输运研究都很有用。我们还证明,散射长度是一个有用的动力学特征,可用于合理解释复杂系统中扩散输运的实验观测结果。我们用生物系统中扩散过程的代表性实验结果评估了本工作的数值准确性。此外,我们提出了温度依赖有效电压(例如在生物环境中量级为1 μV或更小)的观点,将其作为分子持续运动的动力学原因,这种运动最终表现为一种有序运动,即扩散。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验