Nadeau Jay, Lindensmith Chris, Deming Jody W, Fernandez Vicente I, Stocker Roman
1 GALCIT, California Institute of Technology , Pasadena, California.
2 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California.
Astrobiology. 2016 Oct;16(10):755-774. doi: 10.1089/ast.2015.1376. Epub 2016 Aug 23.
Meaningful motion is an unambiguous biosignature, but because life in the Solar System is most likely to be microbial, the question is whether such motion may be detected effectively on the micrometer scale. Recent results on microbial motility in various Earth environments have provided insight into the physics and biology that determine whether and how microorganisms as small as bacteria and archaea swim, under which conditions, and at which speeds. These discoveries have not yet been reviewed in an astrobiological context. This paper discusses these findings in the context of Earth analog environments and environments expected to be encountered in the outer Solar System, particularly the jovian and saturnian moons. We also review the imaging technologies capable of recording motility of submicrometer-sized organisms and discuss how an instrument would interface with several types of sample-collection strategies. Key Words: In situ measurement-Biosignatures-Microbiology-Europa-Ice. Astrobiology 16, 755-774.
有意义的运动是一种明确无误的生物特征,但由于太阳系中的生命很可能是微生物,问题在于这种运动是否能在微米尺度上被有效检测到。近期关于各种地球环境中微生物运动性的研究结果,为决定细菌和古菌等微小微生物能否游动、如何游动、在何种条件下以及以何种速度游动的物理和生物学机制提供了见解。这些发现尚未在天体生物学背景下得到综述。本文在地球模拟环境以及预计在外太阳系(特别是木星和土星的卫星)中遇到的环境背景下讨论了这些发现。我们还回顾了能够记录亚微米级生物运动性的成像技术,并讨论了仪器将如何与几种类型的样本采集策略相结合。关键词:原位测量 - 生物特征 - 微生物学 - 木卫二 - 冰。天体生物学16, 755 - 774。