Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA.
Division of Molecular Biosciences, South Kensington campus, Imperial College London, SW7 2AZ London, UK.
Nat Chem. 2016 Sep;8(9):874-80. doi: 10.1038/nchem.2527. Epub 2016 May 30.
Directional proton transport along 'wires' that feed biochemical reactions in proteins is poorly understood. Amino-acid residues with high pKa are seldom considered as active transport elements in such wires because of their large classical barrier for proton dissociation. Here, we use the light-triggered proton wire of the green fluorescent protein to study its ground-electronic-state proton-transport kinetics, revealing a large temperature-dependent kinetic isotope effect. We show that 'deep' proton tunnelling between hydrogen-bonded oxygen atoms with a typical donor-acceptor distance of 2.7-2.8 Å fully accounts for the rates at all temperatures, including the unexpectedly large value (2.5 × 10(9) s(-1)) found at room temperature. The rate-limiting step in green fluorescent protein is assigned to tunnelling of the ionization-resistant serine hydroxyl proton. This suggests how high-pKa residues within a proton wire can act as a 'tunnel diode' to kinetically trap protons and control the direction of proton flow.
沿蛋白质中生化反应“导线”的定向质子传输机制还不甚清楚。由于高 pKa 的氨基酸残基在经典质子离解过程中存在较大势垒,因此它们很少被认为是此类“导线”中的主动转运元件。在这里,我们使用光触发的绿色荧光蛋白质子导线来研究其基态电子态质子输运动力学,揭示了一个大的温度依赖的动力学同位素效应。我们表明,在典型的供体-受体距离为 2.7-2.8 Å 的氢键氧原子之间进行“深”质子隧穿,完全解释了所有温度下的速率,包括在室温下发现的出乎意料的大速率(2.5×10(9) s(-1))。绿色荧光蛋白中的限速步骤被分配给具有抗离子化丝氨酸羟基质子的隧穿。这表明质子导线上的高 pKa 残基如何作为“隧道二极管”来动力学捕获质子并控制质子流的方向。