Havekes Robbert, Park Alan J, Tolentino Rosa E, Bruinenberg Vibeke M, Tudor Jennifer C, Lee Yool, Hansen Rolf T, Guercio Leonardo A, Linton Edward, Neves-Zaph Susana R, Meerlo Peter, Baillie George S, Houslay Miles D, Abel Ted
Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 AB, Groningen, The Netherlands, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104,
Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
J Neurosci. 2016 Aug 24;36(34):8936-46. doi: 10.1523/JNEUROSCI.0248-16.2016.
Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.
Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling.
环磷酸腺苷(cAMP)信号通路的改变被认为与神经认知和神经精神疾病有关。cAMP特异性磷酸二酯酶4(PDE4)家族成员包含超过25种不同的亚型,在决定空间cAMP降解从而协调细胞内cAMP信号分隔方面发挥关键作用。每种亚型通过其独特的N端结构域与不同的蛋白质复合物结合,从而导致特定细胞内区室中cAMP的靶向降解。然而,特定的分隔型PDE4亚型的功能作用尚未在体内进行研究。在此,我们表明,增加小鼠海马兴奋性神经元中PDE4A5亚型的蛋白质水平会损害一种持久形式的海马突触可塑性,并减弱海马依赖性长期记忆,而不影响焦虑。相反,缺乏独特N端靶向结构域的截短版PDE4A5的病毒表达不影响长期记忆。此外,靶向不同信号体亚群的PDE4A1亚型的过表达不会干扰记忆。基于荧光共振能量转移传感器的cAMP测量结果表明,与截短形式相比,全长PDE4A5会阻碍福斯高林介导的神经元cAMP水平升高。我们的研究表明,PDE4A5独特的N端定位结构域对于靶向特定的与突触可塑性和记忆相关的cAMP依赖性信号至关重要。通过靶向其独特的N端结构域来开发破坏单个PDE4亚型分隔的化合物,可能为预防与cAMP信号通路改变相关的神经精神和神经认知疾病中的认知缺陷提供一种有效的方法。
神经元表现出局部信号传导过程,使生化级联反应能够在特定的亚细胞区室中被选择性激活。磷酸二酯酶(PDE4)家族协调cAMP的降解导致cAMP依赖性信号通路的局部减弱。睡眠剥夺会导致海马中PDE4A5亚型的表达增加。在此,我们探讨了PDE4A5过表达是否模拟与睡眠剥夺相关的行为和突触可塑性表型。PDE4A5在海马神经元中的病毒表达会损害长时程增强并减弱海马依赖性长期记忆的形成。我们的研究结果表明,PDE4A5是认知过程的分子限制因素,可能有助于开发新的治疗方法来预防与cAMP信号通路改变相关的神经精神和神经认知疾病中的认知缺陷。