Suppr超能文献

评估选定的 3D 虚拟筛选工具,以预期鉴定过氧化物酶体增殖物激活受体 (PPAR)γ 部分激动剂。

Evaluation of selected 3D virtual screening tools for the prospective identification of peroxisome proliferator-activated receptor (PPAR) γ partial agonists.

机构信息

Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.

Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria.

出版信息

Eur J Med Chem. 2016 Nov 29;124:49-62. doi: 10.1016/j.ejmech.2016.07.072. Epub 2016 Aug 6.

Abstract

The peroxisome proliferator-activated receptor (PPAR) γ regulates the expression of genes involved in adipogenesis, lipid homeostasis, and glucose metabolism, making it a valuable drug target. However, full activation of the nuclear receptor is associated with unwanted side effects. Research therefore focuses on the discovery of novel partial agonists, which show a distinct protein-ligand interaction pattern compared to full agonists. Within this study, we employed pharmacophore- and shape-based virtual screening and docking independently and in parallel for the identification of novel PPARγ ligands. The ten top-ranked hits retrieved with every method were further investigated with external in silico bioactivity profiling tools. Subsequent biological testing not only confirmed the binding of nine out of the 29 selected test compounds, but enabled the direct comparison of the method performances in a prospective manner. Although all three methods successfully identified novel ligands, they varied in the numbers of active compounds ranked among the top-ten in the virtual hit list. In addition, these compounds were in most cases exclusively predicted as active by the method which initially identified them. This suggests, that the applied programs and methods are highly complementary and cover a distinct chemical space of PPARγ ligands. Further analyses revealed that eight out of the nine active molecules represent novel chemical scaffolds for PPARγ, which can serve as promising starting points for further chemical optimization. In addition, two novel compounds, identified with docking, proved to be partial agonists in the experimental testing.

摘要

过氧化物酶体增殖物激活受体 (PPAR) γ 调节参与脂肪生成、脂质稳态和葡萄糖代谢的基因表达,使其成为有价值的药物靶点。然而,核受体的完全激活与不想要的副作用有关。因此,研究的重点是发现新型部分激动剂,与完全激动剂相比,它们表现出明显不同的蛋白-配体相互作用模式。在本研究中,我们独立地平行使用基于药效团和形状的虚拟筛选和对接来鉴定新型 PPARγ 配体。每种方法检索到的排名前十的高得分命中物进一步用外部计算生物活性预测工具进行了研究。随后的生物学测试不仅证实了 29 种选定测试化合物中有 9 种化合物的结合,而且还能够以前瞻性的方式直接比较方法的性能。尽管所有三种方法都成功地鉴定了新型配体,但它们在虚拟命中列表中排名前十的活性化合物数量上存在差异。此外,这些化合物在大多数情况下仅被最初识别它们的方法预测为活性。这表明,应用的程序和方法高度互补,并涵盖了独特的 PPARγ 配体化学空间。进一步的分析表明,这 9 种活性分子中的 8 种代表了 PPARγ 的新型化学支架,可作为进一步化学优化的有前途的起点。此外,用对接鉴定的两种新型化合物被证明是实验测试中的部分激动剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验