Pirlott Angela G, MacKinnon David P
Department of Psychology, Saint Xavier University, United States.
Department of Psychology, Arizona State University, United States.
J Exp Soc Psychol. 2016 Sep;66:29-38. doi: 10.1016/j.jesp.2015.09.012. Epub 2016 Mar 24.
Identifying causal mechanisms has become a cornerstone of experimental social psychology, and editors in top social psychology journals champion the use of mediation methods, particularly innovative ones when possible (e.g. Halberstadt, 2010, Smith, 2012). Commonly, studies in experimental social psychology randomly assign participants to levels of the independent variable and measure the mediating and dependent variables, and the mediator is assumed to causally affect the dependent variable. However, participants are not randomly assigned to levels of the mediating variable(s), i.e., the relationship between the mediating and dependent variables is correlational. Although researchers likely know that correlational studies pose a risk of confounding, this problem seems forgotten when thinking about experimental designs randomly assigning participants to levels of the independent variable and measuring the mediator (i.e., "measurement-of-mediation" designs). Experimentally manipulating the mediator provides an approach to solving these problems, yet these methods contain their own set of challenges (e.g., Bullock, Green, & Ha, 2010). We describe types of experimental manipulations targeting the mediator (manipulations demonstrating a causal effect of the mediator on the dependent variable and manipulations targeting the strength of the causal effect of the mediator) and types of experimental designs (double randomization, concurrent double randomization, and parallel), provide published examples of the designs, and discuss the strengths and challenges of each design. Therefore, the goals of this paper include providing a practical guide to manipulation-of-mediator designs in light of their challenges and encouraging researchers to use more rigorous approaches to mediation because manipulation-of-mediator designs strengthen the ability to infer causality of the mediating variable on the dependent variable.
识别因果机制已成为实验社会心理学的基石,顶级社会心理学杂志的编辑们提倡使用中介方法,尽可能采用创新方法(例如,哈尔伯施塔特,2010年;史密斯,2012年)。通常,实验社会心理学研究将参与者随机分配到自变量的不同水平,并测量中介变量和因变量,且假定中介变量对因变量有因果影响。然而,参与者并非被随机分配到中介变量的不同水平,即中介变量和因变量之间的关系是相关的。尽管研究人员可能知道相关研究存在混淆风险,但在考虑将参与者随机分配到自变量的不同水平并测量中介变量的实验设计(即“中介测量”设计)时,这个问题似乎被遗忘了。对中介变量进行实验性操纵提供了解决这些问题的一种方法,但这些方法也有其自身的一系列挑战(例如,布洛克、格林和哈,2010年)。我们描述了针对中介变量的实验性操纵类型(证明中介变量对因变量有因果效应的操纵以及针对中介变量因果效应强度的操纵)和实验设计类型(双重随机化、并发双重随机化和平行设计),提供了已发表的设计示例,并讨论了每种设计的优点和挑战。因此,本文的目标包括鉴于其挑战为中介变量操纵设计提供实用指南,并鼓励研究人员对中介作用采用更严谨的方法,因为中介变量操纵设计增强了推断中介变量对因变量因果关系的能力。