Osgood Nathaniel D, Paul Tuhin, Stanley Kevin G, Qian Weicheng
Dept. of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.
Dept. of Community Health and Epidemiology, University of Saskatchewan, Saskatoon, SK, Canada.
PLoS One. 2016 Aug 29;11(8):e0161630. doi: 10.1371/journal.pone.0161630. eCollection 2016.
Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.
描述人们在空间中的移动方式一直是许多学科的重要组成部分。随着通过全球定位系统(GPS)和其他位置传感系统进行自动数据收集的出现,研究人员有机会以前所未有的时空分辨率来研究人类的移动性。然而,通过这些记录系统收集的大量复杂数据,人类很难充分利用,这使得许多研究人员提出了新颖的指标,以便以简洁且有用的方式概括移动模式。一个特别突出的指标是表示个人访问位置序列的字符串的移动熵率。然而,移动熵率不是尺度不变的:基于在不同空间或时间粒度下对同一轨迹的测量进行的熵率计算不会产生相同的值,这通过混淆实验间的比较限制了移动熵率作为一种指标的效用。在本文中,我们从莱姆尔 - 齐夫(Lempel-Ziv)压缩的定义出发,推导出非重复直线路径的移动熵率的尺度关系。我们表明,所得公式预测了模拟移动轨迹的尺度行为,并在某些假设下提供了移动熵率的上限。我们进一步表明,该公式对于特定的采样率具有最大值,这意味着存在针对特定移动模式的最佳采样率。