School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University , Tel Aviv 69978, Israel.
Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University , Tel Aviv 69978, Israel.
Nano Lett. 2016 Oct 12;16(10):6272-6281. doi: 10.1021/acs.nanolett.6b02584. Epub 2016 Sep 6.
The detection of biomolecules is critical for a wide spectrum of applications in life sciences and medical diagnosis. Nonetheless, biosamples are highly complex solutions, which contain an enormous variety of biomolecules, cells, and chemical species. Consequently, the intrinsic chemical complexity of biosamples results in a significant analytical background noise and poses an immense challenge to any analytical measurement, especially when applied without prior efficient separation and purification steps. Here, we demonstrate the application of antigen-dissociation regime, from antibody-modified Si-nanowire sensors, as a simple and effective direct sensing mechanism of biomarkers of interest in complex biosamples, such as serum and untreated blood, which does not require ex situ time-consuming biosample manipulation steps, such as centrifugation, filtering, preconcentration, and desalting, thus overcoming the detrimental Debye screening limitation of nanowire-based biosensors. We found that two key parameters control the capability to perform quantitative biomarkers analysis in biosamples: (i) the affinity strength (k rate) of the antibody-antigen recognition pair, which dictates the time length of the high-affinity slow dissociation subregime, and (ii) the "flow rate" applied during the solution exchange dissociation step, which controls the time width of the low-affinity fast-dissociation subregime. Undoubtedly, this is the simplest and most convenient approach for the SiNW FET-based detection of antigens in complex untreated biosamples. The lack of ex situ biosample manipulation time-consuming processes enhances the portability of the sensing platform and reduces to minimum the required volume of tested sample, as it allows the direct detection of untreated biosamples (5-10 μL blood or serum), while readily reducing the detection cycle duration to less than 5 min, factors of great importance in near-future point-of-care medical applications. We believe this is the first ever reported demonstration on the real-time, direct label-free sensing of biomarkers from untreated blood samples, using SiNW-based FET devices, while not compromising the ultrasensitive sensing capabilities inherent to these devices.
生物分子的检测对于生命科学和医学诊断等广泛领域的应用至关重要。然而,生物样本是高度复杂的溶液,其中包含大量的生物分子、细胞和化学物质。因此,生物样本的固有化学复杂性导致了显著的分析背景噪声,对任何分析测量都构成了巨大挑战,特别是在没有预先进行高效分离和纯化步骤的情况下。在这里,我们展示了抗原解离状态在抗体修饰的硅纳米线传感器中的应用,作为一种简单有效的直接传感复杂生物样本中目标生物标志物的机制,如血清和未经处理的血液,而无需进行耗时的原位生物样本处理步骤,如离心、过滤、预浓缩和脱盐,从而克服了纳米线生物传感器的有害德拜屏蔽限制。我们发现有两个关键参数控制着在生物样本中进行定量生物标志物分析的能力:(i)抗体-抗原识别对的亲和力强度(k rate),它决定了高亲和力慢解离亚区的时间长度;(ii)在溶液交换解离步骤中应用的“流速”,它控制低亲和力快速解离亚区的时间宽度。毫无疑问,这是在复杂未经处理的生物样本中基于 SiNW FET 检测抗原的最简单、最方便的方法。缺乏耗时的原位生物样本处理过程提高了传感平台的便携性,并将所需测试样本的体积最小化,因为它允许直接检测未经处理的生物样本(5-10 μL 血液或血清),同时容易将检测周期持续时间缩短至 5 分钟以内,这在未来的即时医疗应用中非常重要。我们相信,这是首次在不影响这些设备固有的超灵敏传感能力的情况下,使用基于 SiNW 的 FET 器件实时、直接、无标记地从未经处理的血液样本中检测生物标志物的报道。