Mendes Rui D, Canté-Barrett Kirsten, Pieters Rob, Meijerink Jules P P
Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands.
Department of Pediatric Oncology/Hematology, Erasmus MC Rotterdam-Sophia Children's Hospital, Rotterdam, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
Haematologica. 2016 Sep;101(9):1010-7. doi: 10.3324/haematol.2016.146381.
The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates phosphatidylinositol 3-kinase (PI3K)-AKT signaling and is often inactivated by mutations (including deletions) in a variety of cancer types, including T-cell acute lymphoblastic leukemia. Here we review mutation-associated mechanisms that inactivate PTEN together with other molecular mechanisms that activate AKT and contribute to T-cell leukemogenesis. In addition, we discuss how Pten mutations in mouse models affect the efficacy of gamma-secretase inhibitors to block NOTCH1 signaling through activation of AKT. Based on these models and on observations in primary diagnostic samples from patients with T-cell acute lymphoblastic leukemia, we speculate that PTEN-deficient cells employ an intrinsic homeostatic mechanism in which PI3K-AKT signaling is dampened over time. As a result of this reduced PI3K-AKT signaling, the level of AKT activation may be insufficient to compensate for NOTCH1 inhibition, resulting in responsiveness to gamma-secretase inhibitors. On the other hand, de novo acquired PTEN-inactivating events in NOTCH1-dependent leukemia could result in temporary, strong activation of PI3K-AKT signaling, increased glycolysis and glutaminolysis, and consequently gamma-secretase inhibitor resistance. Due to the central role of PTEN-AKT signaling and in the resistance to NOTCH1 inhibition, AKT inhibitors may be a promising addition to current treatment protocols for T-cell acute lymphoblastic leukemia.
肿瘤抑制因子磷酸酶和张力蛋白同源物(PTEN)对磷脂酰肌醇3激酶(PI3K)-AKT信号通路起负向调节作用,在包括T细胞急性淋巴细胞白血病在内的多种癌症类型中常因突变(包括缺失)而失活。在此,我们综述了使PTEN失活的突变相关机制以及激活AKT并促成T细胞白血病发生的其他分子机制。此外,我们还讨论了小鼠模型中的Pten突变如何影响γ-分泌酶抑制剂通过激活AKT来阻断NOTCH1信号的疗效。基于这些模型以及对T细胞急性淋巴细胞白血病患者原发性诊断样本的观察,我们推测PTEN缺陷细胞采用一种内在的稳态机制,随着时间的推移PI3K-AKT信号通路会受到抑制。由于PI3K-AKT信号通路的减弱,AKT的激活水平可能不足以补偿NOTCH1的抑制作用,从而导致对γ-分泌酶抑制剂产生反应。另一方面,NOTCH1依赖性白血病中新生获得的PTEN失活事件可能导致PI3K-AKT信号通路的暂时强烈激活、糖酵解和谷氨酰胺分解增加,进而导致对γ-分泌酶抑制剂产生耐药性。由于PTEN-AKT信号通路的核心作用以及对NOTCH1抑制的耐药性,AKT抑制剂可能是目前T细胞急性淋巴细胞白血病治疗方案中一个有前景的补充。