Lin Chun-Chieh, Riabinina Olena, Potter Christopher J
The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine.
MRC Clinical Sciences Center, Imperial College London.
J Vis Exp. 2016 Aug 20(114):54346. doi: 10.3791/54346.
A key challenge in neurobiology is to understand how neural circuits function to guide appropriate animal behaviors. Drosophila melanogaster is an excellent model system for such investigations due to its complex behaviors, powerful genetic techniques, and compact nervous system. Laboratory behavioral assays have long been used with Drosophila to simulate properties of the natural environment and study the neural mechanisms underlying the corresponding behaviors (e.g. phototaxis, chemotaxis, sensory learning and memory)(1-3). With the recent availability of large collections of transgenic Drosophila lines that label specific neural subsets, behavioral assays have taken on a prominent role to link neurons with behaviors(4-11). Versatile and reproducible paradigms, together with the underlying computational routines for data analysis, are indispensable for rapid tests of candidate fly lines with various genotypes. Particularly useful are setups that are flexible in the number of animals tested, duration of experiments and nature of presented stimuli. The assay of choice should also generate reproducible data that is easy to acquire and analyze. Here, we present a detailed description of a system and protocol for assaying behavioral responses of Drosophila flies in a large four-field arena. The setup is used here to assay responses of flies to a single olfactory stimulus; however, the same setup may be modified to test multiple olfactory, visual or optogenetic stimuli, or a combination of these. The olfactometer setup records the activity of fly populations responding to odors, and computational analytical methods are applied to quantify fly behaviors. The collected data are analyzed to get a quick read-out of an experimental run, which is essential for efficient data collection and the optimization of experimental conditions.
神经生物学中的一个关键挑战是理解神经回路如何发挥作用以引导适当的动物行为。由于其复杂的行为、强大的遗传技术和紧凑的神经系统,黑腹果蝇是进行此类研究的优秀模型系统。长期以来,实验室行为测定法一直用于果蝇,以模拟自然环境的特性并研究相应行为背后的神经机制(例如趋光性、趋化性、感觉学习和记忆)(1-3)。随着最近大量标记特定神经亚群的转基因果蝇品系的出现,行为测定法在将神经元与行为联系起来方面发挥了重要作用(4-11)。通用且可重复的范式,以及用于数据分析的底层计算程序,对于快速测试具有各种基因型的候选果蝇品系来说是不可或缺的。特别有用的是在测试动物数量、实验持续时间和呈现刺激的性质方面具有灵活性的设置。所选择的测定法还应生成易于获取和分析的可重复数据。在这里,我们详细描述了一种用于在大型四场竞技场中测定果蝇行为反应的系统和方案。这里使用该设置来测定果蝇对单一嗅觉刺激的反应;然而,相同的设置可以修改为测试多种嗅觉、视觉或光遗传学刺激,或这些刺激的组合。嗅觉计设置记录果蝇群体对气味的反应活动,并应用计算分析方法来量化果蝇行为。对收集到的数据进行分析,以快速了解实验运行情况,这对于高效的数据收集和实验条件的优化至关重要。