Shaddad Maged N, Ghanem Mohamed A, Al-Mayouf Abdullah M, Gimenez Sixto, Bisquert Juan, Herraiz-Cardona Isaac
Department of Chemistry, Faculty of Science, King Saud University, Riyadh, Saudi Arabia.
Institute of Advanced Materials (INAM), Universitat Jaume I, 12006, Castelló, Spain.
ChemSusChem. 2016 Oct 6;9(19):2779-2783. doi: 10.1002/cssc.201600890. Epub 2016 Sep 1.
Photoelectrochemical water splitting with metal oxide semiconductors offers a cost-competitive alternative for the generation of solar fuels. Most of the materials studied so far suffer from poor charge-transfer kinetics at the semiconductor/liquid interface, making compulsory the use of catalytic layers to overcome the large overpotentials required for the water oxidation reaction. Herein, we report a very soft electrolytic synthesis deposition method, which allows remarkably enhanced water oxidation kinetics of BiVO photoanodes by the sequential addition of Zr and Fe precursors. Upon a heat treatment cycle, these precursors are converted into monoclinic ZrO and α-Fe O nanoparticles, which mainly act as catalysts, leading to a five-fold increase of the water oxidation photocurrent of BiVO . This method provides a versatile platform that is easy to apply to different semiconductor materials, fully reproducible, and facile to scale-up on large area conductive substrates with attractive implications for technological deployment.
利用金属氧化物半导体进行光电化学水分解为太阳能燃料的生产提供了一种具有成本竞争力的替代方案。迄今为止研究的大多数材料在半导体/液体界面处存在电荷转移动力学较差的问题,因此必须使用催化层来克服水氧化反应所需的大过电位。在此,我们报告了一种非常温和的电解合成沉积方法,该方法通过依次添加Zr和Fe前驱体,可显著提高BiVO光阳极的水氧化动力学。经过一个热处理循环后,这些前驱体转化为单斜ZrO和α-FeO纳米颗粒,它们主要作为催化剂,使BiVO的水氧化光电流增加了五倍。该方法提供了一个通用平台,易于应用于不同的半导体材料,具有完全可重复性,并且易于在大面积导电基板上扩大规模,对技术应用具有诱人的意义。