Suppr超能文献

轴向取代的硅酞菁作为二元和三元体系中的电子供体,与氮杂富勒烯作为电子受体用于光诱导电荷分离。

Axially Substituted Silicon Phthalocyanine as Electron Donor in a Dyad and Triad with Azafullerene as Electron Acceptor for Photoinduced Charge Separation.

作者信息

Rotas Georgios, Martín-Gomis Luis, Ohkubo Kei, Fernández-Lázaro Fernando, Fukuzumi Shunichi, Tagmatarchis Nikos, Sastre-Santos Ángela

机构信息

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 116 35 Athens, Greece.

División de Química Orgánica Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain.

出版信息

Chemistry. 2016 Oct 10;22(42):15137-15143. doi: 10.1002/chem.201603065. Epub 2016 Sep 6.

Abstract

The synthesis of a donor-acceptor silicon phthalocyanine (SiPc)-azafullerene (C N) dyad 1 and of the first acceptor-donor-acceptor C N-SiPc-C N dumbbell triad 2 was accomplished. The two C N-based materials were comprehensively characterized with the aid of NMR spectroscopy, MALDI-MS as well as DFT calculations and their redox and photophysical properties were evaluated with CV and steady-state and time-resolved absorption and photoluminescence spectroscopy measurements. Notably, femtosecond transient absorption spectroscopy assays revealed that both dyad 1 and triad 2 undergo, after selective photoexcitation of the SiPc moiety, photoinduced electron transfer from the singlet excited state of the SiPc moiety to the azafullerene counterpart to produce the charge-separated state, with lifetimes of 660 ps, in the case of dyad 1, and 810 ps, in the case of triad 2. The current results are expected to have significant implications en route to the design of advanced C N-based donor-acceptor systems targeting energy conversion applications.

摘要

成功合成了供体-受体型硅酞菁(SiPc)-氮杂富勒烯(C₅₉N)二元化合物1以及首个受体-供体-受体型C₅₉N-SiPc-C₅₉N哑铃状三元化合物2。借助核磁共振光谱、基质辅助激光解吸电离质谱以及密度泛函理论计算对这两种基于C₅₉N的材料进行了全面表征,并通过循环伏安法、稳态和时间分辨吸收光谱及光致发光光谱测量对其氧化还原和光物理性质进行了评估。值得注意的是,飞秒瞬态吸收光谱分析表明,在对SiPc部分进行选择性光激发后,二元化合物1和三元化合物2均发生了从SiPc部分的单重激发态到氮杂富勒烯对应部分的光致电子转移,从而产生电荷分离态,二元化合物1的电荷分离态寿命为660皮秒,三元化合物2的电荷分离态寿命为810皮秒。预计目前的结果对于设计用于能量转换应用的先进基于C₅₉N的供体-受体系统具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验