Suppr超能文献

视网膜神经节细胞的时空共依赖性可由其感受野中新颖且可分离的成分来解释。

Space-time codependence of retinal ganglion cells can be explained by novel and separable components of their receptive fields.

作者信息

Cowan Cameron S, Sabharwal Jasdeep, Wu Samuel M

机构信息

Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas.

Department of Ophthalmology, Baylor College of Medicine, Houston, Texas Department of Neuroscience, Baylor College of Medicine, Houston, Texas Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas

出版信息

Physiol Rep. 2016 Sep;4(17). doi: 10.14814/phy2.12952.

Abstract

Reverse correlation methods such as spike-triggered averaging consistently identify the spatial center in the linear receptive fields (RFs) of retinal ganglion cells (GCs). However, the spatial antagonistic surround observed in classical experiments has proven more elusive. Tests for the antagonistic surround have heretofore relied on models that make questionable simplifying assumptions such as space-time separability and radial homogeneity/symmetry. We circumvented these, along with other common assumptions, and observed a linear antagonistic surround in 754 of 805 mouse GCs. By characterizing the RF's space-time structure, we found the overall linear RF's inseparability could be accounted for both by tuning differences between the center and surround and differences within the surround. Finally, we applied this approach to characterize spatial asymmetry in the RF surround. These results shed new light on the spatiotemporal organization of GC linear RFs and highlight a major contributor to its inseparability.

摘要

诸如尖峰触发平均法之类的反向相关方法始终能确定视网膜神经节细胞(GCs)线性感受野(RFs)中的空间中心。然而,经典实验中观察到的空间拮抗周边区域却更难捉摸。迄今为止,对拮抗周边区域的测试依赖于一些做出了可疑简化假设的模型,比如时空可分离性以及径向均匀性/对称性。我们规避了这些以及其他常见假设,并在805个小鼠GCs中的754个中观察到了线性拮抗周边区域。通过表征RF的时空结构,我们发现整体线性RF的不可分离性既可以由中心和周边区域之间的调谐差异来解释,也可以由周边区域内的差异来解释。最后,我们应用这种方法来表征RF周边区域的空间不对称性。这些结果为GC线性RF的时空组织提供了新的见解,并突出了其不可分离性的一个主要因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ec/5027358/f56ae97470b7/PHY2-4-e12952-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验