Suppr超能文献

在新的和不断变化的环境中测试“取最佳”策略。

Testing take-the-best in new and changing environments.

作者信息

Lee Michael D, Blanco Gabrielle, Bo Nikole

机构信息

Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, 92697-5100, USA.

出版信息

Behav Res Methods. 2017 Aug;49(4):1420-1431. doi: 10.3758/s13428-016-0798-x.

Abstract

Take-the-best is a decision-making strategy that chooses between alternatives, by searching the cues representing the alternatives in order of cue validity, and choosing the alternative with the first discriminating cue. Theoretical support for take-the-best comes from the "fast and frugal" approach to modeling cognition, which assumes decision-making strategies need to be fast to cope with a competitive world, and be simple to be robust to uncertainty and environmental change. We contribute to the empirical evaluation of take-the-best in two ways. First, we generate four new environments-involving bridge lengths, hamburger prices, theme park attendances, and US university rankings-supplementing the relatively limited number of naturally cue-based environments previously considered. We find that take-the-best is as accurate as rival decision strategies that use all of the available cues. Secondly, we develop 19 new data sets characterizing the change in cities and their populations in four countries. We find that take-the-best maintains its accuracy and limited search as the environments change, even if cue validities learned in one environment are used to make decisions in another. Once again, we find that take-the-best is as accurate as rival strategies that use all of the cues. We conclude that these new evaluations support the theoretical claims of the accuracy, frugality, and robustness for take-the-best, and that the new data sets provide a valuable resource for the more general study of the relationship between effective decision-making strategies and the environments in which they operate.

摘要

“取最好的”是一种决策策略,它通过按照线索有效性的顺序搜索代表备选方案的线索,并选择第一个具有区分性线索的备选方案,从而在备选方案之间进行选择。“取最好的”这一策略的理论支持来自于对认知建模的“快速节俭”方法,该方法认为决策策略需要快速以应对竞争激烈的世界,并且要简单以便能应对不确定性和环境变化。我们从两个方面对“取最好的”策略进行了实证评估。首先,我们生成了四个新环境——涉及桥梁长度、汉堡价格、主题公园游客量和美国大学排名——补充了之前所考虑的相对有限的基于自然线索的环境数量。我们发现,“取最好的”策略与使用所有可用线索的竞争决策策略一样准确。其次,我们开发了19个新数据集,描述了四个国家城市及其人口的变化情况。我们发现,即使在一个环境中学习到的线索有效性被用于在另一个环境中进行决策,随着环境的变化,“取最好的”策略仍能保持其准确性和有限的搜索。我们再次发现,“取最好的”策略与使用所有线索的竞争策略一样准确。我们得出结论,这些新的评估支持了“取最好的”策略在准确性、节俭性和稳健性方面的理论主张,并且这些新数据集为更广泛地研究有效决策策略与其运作环境之间的关系提供了宝贵资源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验