El Bitar Nabil, Pollin Bernard, Karroum Elias, Pincedé Ivanne, Le Bars Daniel
Sorbonne Universités, Université Pierre et Marie Curie, Faculté de Médecine, Paris, France; and.
Neurosciences Paris-Seine, Institut National de la Santé et de la Recherche Médicale UMRS-1130, Centre National de la Recherche Scientifique UMR-8246, Paris, France.
J Neurophysiol. 2016 Dec 1;116(6):2473-2496. doi: 10.1152/jn.00482.2016. Epub 2016 Sep 7.
In thermoneutral conditions, rats display cyclic variations of the vasomotion of the tail and paws, the most widely used target organs in current acute or chronic animal models of pain. Systemic morphine elicits their vasoconstriction followed by hyperthermia in a naloxone-reversible and dose-dependent fashion. The dose-response curves were steep with ED in the 0.5-1 mg/kg range. Given the pivotal functional role of the rostral ventromedial medulla (RVM) in nociception and the rostral medullary raphe (rMR) in thermoregulation, two largely overlapping brain regions, the RVM/rMR was blocked by muscimol: it suppressed the effects of morphine. "On-" and "off-" neurons recorded in the RVM/rMR are activated and inhibited by thermal nociceptive stimuli, respectively. They are also implicated in regulating the cyclic variations of the vasomotion of the tail and paws seen in thermoneutral conditions. Morphine elicited abrupt inhibition and activation of the firing of on- and off-cells recorded in the RVM/rMR. By using a model that takes into account the power of the radiant heat source, initial skin temperature, core body temperature, and peripheral nerve conduction distance, one can argue that the morphine-induced increase of reaction time is mainly related to the morphine-induced vasoconstriction. This statement was confirmed by analyzing in psychophysical terms the tail-flick response to random variations of noxious radiant heat. Although the increase of a reaction time to radiant heat is generally interpreted in terms of analgesia, the present data question the validity of using such an approach to build a pain index.
在热中性条件下,大鼠尾部和爪子的血管运动呈现周期性变化,这是当前急性或慢性疼痛动物模型中使用最广泛的靶器官。全身注射吗啡会以纳洛酮可逆且剂量依赖的方式引起血管收缩,随后体温升高。剂量 - 反应曲线很陡,半数有效剂量(ED)在0.5 - 1毫克/千克范围内。鉴于延髓头端腹内侧区(RVM)在伤害感受中起关键功能作用,而延髓头端中缝核(rMR)在体温调节中起关键作用,这两个大脑区域有很大重叠,RVM/rMR被蝇蕈醇阻断:它抑制了吗啡的作用。在RVM/rMR中记录到的“开”神经元和“关”神经元分别被热伤害性刺激激活和抑制。它们还参与调节热中性条件下尾部和爪子血管运动的周期性变化。吗啡会突然抑制和激活在RVM/rMR中记录到的“开”细胞和“关”细胞的放电。通过使用一个考虑了辐射热源功率、初始皮肤温度、核心体温和周围神经传导距离的模型,可以认为吗啡诱导的反应时间增加主要与吗啡诱导的血管收缩有关。通过从心理物理学角度分析对有害辐射热随机变化的甩尾反应,这一说法得到了证实。尽管对辐射热反应时间的增加通常被解释为镇痛作用,但目前的数据对使用这种方法建立疼痛指数的有效性提出了质疑。