Suppr超能文献

熟悉度与信任:领域科学家对可视化分析和传统分析方法的信任的比较研究。

Familiarity Vs Trust: A Comparative Study of Domain Scientists' Trust in Visual Analytics and Conventional Analysis Methods.

出版信息

IEEE Trans Vis Comput Graph. 2017 Jan;23(1):271-280. doi: 10.1109/TVCG.2016.2598544. Epub 2016 Aug 8.

Abstract

Combining interactive visualization with automated analytical methods like statistics and data mining facilitates data-driven discovery. These visual analytic methods are beginning to be instantiated within mixed-initiative systems, where humans and machines collaboratively influence evidence-gathering and decision-making. But an open research question is that, when domain experts analyze their data, can they completely trust the outputs and operations on the machine-side? Visualization potentially leads to a transparent analysis process, but do domain experts always trust what they see? To address these questions, we present results from the design and evaluation of a mixed-initiative, visual analytics system for biologists, focusing on analyzing the relationships between familiarity of an analysis medium and domain experts' trust. We propose a trust-augmented design of the visual analytics system, that explicitly takes into account domain-specific tasks, conventions, and preferences. For evaluating the system, we present the results of a controlled user study with 34 biologists where we compare the variation of the level of trust across conventional and visual analytic mediums and explore the influence of familiarity and task complexity on trust. We find that despite being unfamiliar with a visual analytic medium, scientists seem to have an average level of trust that is comparable with the same in conventional analysis medium. In fact, for complex sense-making tasks, we find that the visual analytic system is able to inspire greater trust than other mediums. We summarize the implications of our findings with directions for future research on trustworthiness of visual analytic systems.

摘要

将交互式可视化与统计和数据挖掘等自动化分析方法相结合,有助于实现数据驱动的发现。这些可视化分析方法开始在混合主动式系统中得到体现,在这些系统中,人类和机器共同影响证据收集和决策制定。但一个悬而未决的研究问题是,当领域专家分析他们的数据时,他们是否可以完全信任机器端的输出和操作?可视化可能会带来透明的分析过程,但领域专家是否总是相信他们所看到的?为了解决这些问题,我们介绍了一个针对生物学家的混合主动式可视化分析系统的设计和评估结果,重点分析了分析媒介的熟悉度与领域专家信任之间的关系。我们提出了一种信任增强的可视化分析系统设计,该设计明确考虑了特定于领域的任务、约定和偏好。为了评估系统,我们展示了一项包含 34 名生物学家的受控用户研究的结果,我们比较了传统和可视化分析媒介之间信任水平的变化,并探讨了熟悉度和任务复杂性对信任的影响。我们发现,尽管科学家们对可视化分析媒介不熟悉,但他们似乎对其具有平均水平的信任,这与传统分析媒介中的信任相当。事实上,对于复杂的感知任务,我们发现可视化分析系统能够激发比其他媒介更高的信任。我们总结了我们的发现对可视化分析系统可信度的未来研究方向的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验