Leitmann Sebastian, Höfling Felix, Franosch Thomas
Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria.
Fachbereich Mathematik und Informatik, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany.
Phys Rev Lett. 2016 Aug 26;117(9):097801. doi: 10.1103/PhysRevLett.117.097801. Epub 2016 Aug 25.
We study dynamically crowded solutions of stiff fibers deep in the semidilute regime, where the motion of a single constituent becomes increasingly confined to a narrow tube. The spatiotemporal dynamics for wave numbers resolving the motion in the confining tube becomes accessible in Brownian dynamics simulations upon employing a geometry-adapted neighbor list. We demonstrate that in such crowded environments the intermediate scattering function, characterizing the motion in space and time, can be predicted quantitatively by simulating a single freely diffusing phantom needle only, yet with very unusual diffusion coefficients.
我们研究了半稀溶液区域深处刚性纤维的动态拥挤溶液,其中单个组分的运动越来越局限于一个狭窄的管道中。通过采用与几何形状相适应的邻居列表,在布朗动力学模拟中,可以获得用于解析限制管道中运动的波数的时空动力学。我们证明,在这种拥挤环境中,仅通过模拟单个自由扩散的虚拟针,就可以定量预测表征时空运动的中间散射函数,不过其扩散系数非常特殊。