Suppr超能文献

酵母中的能量储存:调控及其与乙醇生产的竞争

Energy Storage in Yeast: Regulation and Competition with Ethanol Production.

作者信息

Jain Shilpa, Dholakia Hemal, Kirtley Winston, Oelkers Peter

机构信息

Department of Bioscience and Biotechnology, Drexel University, 3245 Chestnut Street, Philadelphia, PA, 19104, USA.

Trac Services Ltd, Trevenson Road, TR153, Truro, Cornwall, UK.

出版信息

Curr Microbiol. 2016 Dec;73(6):851-858. doi: 10.1007/s00284-016-1127-4. Epub 2016 Sep 12.

Abstract

Mechanisms that may regulate the storage of energy as triacylglycerol in Saccharomyces cerevisiae were examined. First, the kinetics of Dga1p, which mediates the majority of diacylglycerol esterification, the lone committed step in triacylglycerol synthesis, was measured in vitro. With an apparent K of 17.0 μM, Dga1p has higher affinity for oleoyl-CoA than the only S. cerevisiae acyltransferase previously kinetically characterized, Lpt1p. Lpt1p is a 1-acylglycerol-3-phosphate O-acyltransferase that produces phosphatidate, a precursor to diacylglycerol. Therefore, limiting triacylglycerol synthesis to situations of elevated acyl-CoA concentration is unlikely. However, Dga1p's apparent V of 5.8 nmol/min/mg was 20 times lower than Lpt1p's. This supports Dga1p being rate limiting for TAG synthesis. Dga1p activity was not activated or inhibited when seven different molecules (e.g., ATP) which reflect cellular energy status were provided at physiological concentrations. Thus, allosteric regulation was not found. Coordination between triacylglycerol and glycogen synthesis was also tested. Yeast genetically deficient in triacylglycerol synthesis did not store more energy in glycogen and vice versa. Lastly, we tested whether genetically limiting energy storage in triacylglycerol, glycogen, steryl esters, or combinations of these will increase ethanol production efficiency. In nutrient-rich media containing 5 % glucose, solely limiting glycogen synthesis had the greatest affect, increasing ethanol production efficiency by 12 %. Since limiting glycogen synthesis only had a modest effect on growth in media containing 10 % ethanol, such genetic manipulation may improve commercial ethanol production.

摘要

研究了酿酒酵母中可能调节能量以三酰甘油形式储存的机制。首先,在体外测量了Dga1p的动力学,Dga1p介导了大部分二酰甘油酯化反应,这是三酰甘油合成中唯一的限速步骤。Dga1p对油酰辅酶A的表观K值为17.0 μM,比对酿酒酵母中先前进行过动力学表征的唯一酰基转移酶Lpt1p对油酰辅酶A的亲和力更高。Lpt1p是一种1-酰基甘油-3-磷酸O-酰基转移酶,可产生磷脂酸,磷脂酸是二酰甘油的前体。因此,将三酰甘油合成限制在酰基辅酶A浓度升高的情况下不太可能。然而,Dga1p的表观V为5.8 nmol/min/mg,比Lpt1p的低20倍。这支持Dga1p是TAG合成的限速因素。当以生理浓度提供反映细胞能量状态的七种不同分子(例如ATP)时,Dga1p的活性未被激活或抑制。因此,未发现变构调节。还测试了三酰甘油和糖原合成之间的协调性。三酰甘油合成基因缺陷的酵母不会在糖原中储存更多能量,反之亦然。最后,我们测试了通过基因手段限制三酰甘油、糖原、甾醇酯或它们的组合中的能量储存是否会提高乙醇生产效率。在含有5%葡萄糖的富营养培养基中,仅限制糖原合成的影响最大,乙醇生产效率提高了12%。由于限制糖原合成对含有10%乙醇的培养基中的生长只有适度影响,这种基因操作可能会提高商业乙醇生产效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验