Suppr超能文献

提高维生素E含量可改善生物强化高粱中全反式β-胡萝卜素的积累和稳定性。

Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum.

作者信息

Che Ping, Zhao Zuo-Yu, Glassman Kimberly, Dolde David, Hu Tiger X, Jones Todd J, Gruis Darren Fred, Obukosia Silas, Wambugu Florence, Albertsen Marc C

机构信息

DuPont Pioneer, Johnston, IA 50131;

Africa Harvest Biotech Foundation International, Nairobi 00621, Kenya.

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11040-5. doi: 10.1073/pnas.1605689113. Epub 2016 Sep 12.

Abstract

Micronutrient deficiencies are common in locales where people must rely upon sorghum as their staple diet. Sorghum grain is seriously deficient in provitamin A (β-carotene) and in the bioavailability of iron and zinc. Biofortification is a process to improve crops for one or more micronutrient deficiencies. We have developed sorghum with increased β-carotene accumulation that will alleviate vitamin A deficiency among people who rely on sorghum as their dietary staple. However, subsequent β-carotene instability during storage negatively affects the full utilization of this essential micronutrient. We determined that oxidation is the main factor causing β-carotene degradation under ambient conditions. We further demonstrated that coexpression of homogentisate geranylgeranyl transferase (HGGT), stacked with carotenoid biosynthesis genes, can mitigate β-carotene oxidative degradation, resulting in increased β-carotene accumulation and stability. A kinetic study of β-carotene degradation showed that the half-life of β-carotene is extended from less than 4 wk to 10 wk on average with HGGT coexpression.

摘要

在人们必须依赖高粱作为主食的地区,微量营养素缺乏情况很常见。高粱籽粒严重缺乏维生素A原(β-胡萝卜素),且铁和锌的生物利用率低。生物强化是一种改善作物以解决一种或多种微量营养素缺乏问题的过程。我们已经培育出β-胡萝卜素积累量增加的高粱,这将缓解依赖高粱作为主食的人群中的维生素A缺乏问题。然而,随后储存期间β-胡萝卜素的不稳定性对这种必需微量营养素的充分利用产生了负面影响。我们确定氧化是导致环境条件下β-胡萝卜素降解的主要因素。我们进一步证明,与类胡萝卜素生物合成基因堆叠在一起共表达的尿黑酸香叶基香叶基转移酶(HGGT),可以减轻β-胡萝卜素的氧化降解,从而增加β-胡萝卜素的积累和稳定性。一项关于β-胡萝卜素降解的动力学研究表明,共表达HGGT时,β-胡萝卜素的半衰期平均从不到4周延长至10周。

相似文献

1
Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):11040-5. doi: 10.1073/pnas.1605689113. Epub 2016 Sep 12.
2
Bioaccessibility of carotenoids from transgenic provitamin A biofortified sorghum.
J Agric Food Chem. 2013 Jun 19;61(24):5764-71. doi: 10.1021/jf305361s. Epub 2013 Jun 7.
4
Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds.
aBIOTECH. 2021 May 18;2(3):191-214. doi: 10.1007/s42994-021-00046-1. eCollection 2021 Sep.
6
Nonenzymatic β-Carotene Degradation in Provitamin A-Biofortified Crop Plants.
J Agric Food Chem. 2017 Aug 9;65(31):6588-6598. doi: 10.1021/acs.jafc.7b01693. Epub 2017 Jul 28.
7
Evaluation of Agronomic Performance of β-Carotene Elevated Sorghum in Confined Field Conditions.
Methods Mol Biol. 2019;1931:209-220. doi: 10.1007/978-1-4939-9039-9_15.
8
Nutritionally Enhanced Sorghum for the Arid and Semiarid Tropical Areas of Africa.
Methods Mol Biol. 2019;1931:197-207. doi: 10.1007/978-1-4939-9039-9_14.
9
Is there a place for nutrition-sensitive agriculture?
Proc Nutr Soc. 2015 Nov;74(4):441-8. doi: 10.1017/S0029665115000099. Epub 2015 Apr 8.

引用本文的文献

2
3
Unusual vitamin E profile in the oil of a wild African oil palm tree ( Jacq.) enhances oxidative stability of provitamin A.
Front Plant Sci. 2024 Jun 27;15:1400852. doi: 10.3389/fpls.2024.1400852. eCollection 2024.
5
Genetic and genomic interventions in crop biofortification: Examples in millets.
Front Plant Sci. 2023 Mar 6;14:1123655. doi: 10.3389/fpls.2023.1123655. eCollection 2023.
8
Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds.
aBIOTECH. 2021 May 18;2(3):191-214. doi: 10.1007/s42994-021-00046-1. eCollection 2021 Sep.
9
Open avenues for carotenoid biofortification of plant tissues.
Plant Commun. 2023 Jan 9;4(1):100466. doi: 10.1016/j.xplc.2022.100466. Epub 2022 Oct 27.

本文引用的文献

1
Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type.
Food Chem. 2012 Jun 1;132(3):1221-1229. doi: 10.1016/j.foodchem.2011.11.091. Epub 2011 Dec 2.
2
Optimized -mediated sorghum transformation protocol and molecular data of transgenic sorghum plants.
In Vitro Cell Dev Biol Plant. 2014;50(1):9-18. doi: 10.1007/s11627-013-9583-z. Epub 2013 Dec 13.
3
Effects of antioxidants on the stability of β-Carotene in O/W emulsions stabilized by Gum Arabic.
J Food Sci Technol. 2015 Jun;52(6):3300-11. doi: 10.1007/s13197-014-1380-0. Epub 2014 May 3.
4
Nutritionally enhanced food crops; progress and perspectives.
Int J Mol Sci. 2015 Feb 11;16(2):3895-914. doi: 10.3390/ijms16023895.
5
Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):3558-63. doi: 10.1073/pnas.1420831112. Epub 2015 Feb 9.
6
Carotenoid metabolism in plants.
Mol Plant. 2015 Jan;8(1):68-82. doi: 10.1016/j.molp.2014.12.007. Epub 2014 Dec 17.
8
Immunology: A is for immunity.
Nature. 2014 Apr 3;508(7494):47-8. doi: 10.1038/nature13216. Epub 2014 Mar 19.
9
Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity.
Nature. 2014 Apr 3;508(7494):123-7. doi: 10.1038/nature13158. Epub 2014 Mar 19.
10
Present and future of folate biofortification of crop plants.
J Exp Bot. 2014 Mar;65(4):895-906. doi: 10.1093/jxb/ert483.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验