Welch Kyle J, Liebman-Peláez Alexander, Corwin Eric I
Materials Science Institute, University of Oregon, Eugene, OR 97403; Department of Physics, University of Oregon, Eugene, OR 97403
Materials Science Institute, University of Oregon, Eugene, OR 97403; Department of Physics, University of Oregon, Eugene, OR 97403.
Proc Natl Acad Sci U S A. 2016 Sep 27;113(39):10807-12. doi: 10.1073/pnas.1606461113. Epub 2016 Sep 12.
In conventional fluids, viscosity depends on temperature according to a strict relationship. To change this relationship, one must change the molecular nature of the fluid. Here, we create a metafluid whose properties are derived not from the properties of molecules but rather from chaotic waves excited on the surface of vertically agitated water. By making direct rheological measurements of the flow properties of our metafluid, we show that it has independently tunable viscosity and temperature, a quality that no conventional fluid possesses. We go on to show that the metafluid obeys the Einstein relation, which relates many-body response (viscosity) to single-particle dynamics (diffusion) and is a fundamental result in equilibrium thermal systems. Thus, our metafluid is wholly consistent with equilibrium thermal physics, despite being markedly nonequilibrium. Taken together, our results demonstrate a type of material that retains equilibrium physics while simultaneously allowing for direct programmatic control over material properties.
在传统流体中,粘度与温度之间存在严格的依赖关系。要改变这种关系,就必须改变流体的分子性质。在此,我们创造了一种超流体,其性质并非源自分子特性,而是源自垂直振荡水面上激发的混沌波。通过对我们的超流体流动特性进行直接流变测量,我们发现它具有独立可调的粘度和温度,这是任何传统流体都不具备的特性。我们进一步表明,这种超流体遵循爱因斯坦关系,该关系将多体响应(粘度)与单粒子动力学(扩散)联系起来,是平衡热系统中的一个基本结果。因此,尽管我们的超流体明显处于非平衡状态,但它完全符合平衡热物理学。综上所述,我们的研究结果展示了一种既能保留平衡物理学特性,又能同时对材料特性进行直接编程控制的材料类型。