Suppr超能文献

有限长度白噪声时间序列的排列熵

Permutation entropy of finite-length white-noise time series.

作者信息

Little Douglas J, Kane Deb M

机构信息

MQ Photonics Research Centre, Department of Physics and Astronomy, Macquarie University, North Ryde, NSW 2109, Australia.

出版信息

Phys Rev E. 2016 Aug;94(2-1):022118. doi: 10.1103/PhysRevE.94.022118. Epub 2016 Aug 12.

Abstract

Permutation entropy (PE) is commonly used to discriminate complex structure from white noise in a time series. While the PE of white noise is well understood in the long time-series limit, analysis in the general case is currently lacking. Here the expectation value and variance of white-noise PE are derived as functions of the number of ordinal pattern trials, N, and the embedding dimension, D. It is demonstrated that the probability distribution of the white-noise PE converges to a χ^{2} distribution with D!-1 degrees of freedom as N becomes large. It is further demonstrated that the PE variance for an arbitrary time series can be estimated as the variance of a related metric, the Kullback-Leibler entropy (KLE), allowing the qualitative N≫D! condition to be recast as a quantitative estimate of the N required to achieve a desired PE calculation precision. Application of this theory to statistical inference is demonstrated in the case of an experimentally obtained noise series, where the probability of obtaining the observed PE value was calculated assuming a white-noise time series. Standard statistical inference can be used to draw conclusions whether the white-noise null hypothesis can be accepted or rejected. This methodology can be applied to other null hypotheses, such as discriminating whether two time series are generated from different complex system states.

摘要

排列熵(PE)通常用于在时间序列中区分复杂结构与白噪声。虽然在长时间序列极限下对白噪声的排列熵已充分了解,但目前缺乏一般情况下的分析。在此,白噪声排列熵的期望值和方差被推导为序数模式试验次数(N)和嵌入维数(D)的函数。结果表明,随着(N)增大,白噪声排列熵的概率分布收敛于自由度为(D! - 1)的(\chi^{2})分布。进一步证明,任意时间序列的排列熵方差可估计为相关度量——库尔贝克 - 莱布勒熵(KLE)的方差,从而使定性的(N\gg D!)条件可转化为对实现所需排列熵计算精度所需(N)的定量估计。该理论在一个实验获得的噪声序列案例中的统计推断应用得到了证明,其中假设为白噪声时间序列计算了获得观测排列熵值的概率。标准统计推断可用于得出是否接受或拒绝白噪声零假设的结论。这种方法可应用于其他零假设,例如判别两个时间序列是否由不同的复杂系统状态生成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验