Suppr超能文献

高多分散胶体悬浮液的动力学:细菌细胞质的模型体系。

Dynamics of highly polydisperse colloidal suspensions as a model system for bacterial cytoplasm.

机构信息

Department of Chemistry, Sogang University, Seoul 121-742, Republic of Korea.

出版信息

Phys Rev E. 2016 Aug;94(2-1):022614. doi: 10.1103/PhysRevE.94.022614. Epub 2016 Aug 30.

Abstract

There are various kinds of macromolecules in bacterial cell cytoplasm. The size polydispersity of the macromolecules is so significant that the crystallization and the phase separation could be suppressed, thus stabilizing the liquid state of bacterial cytoplasm. On the other hand, recent experiments suggested that the macromolecules in bacterial cytoplasm should exhibit glassy dynamics, which should be also affected significantly by the size polydispersity of the macromolecules. In this work, we investigate the anomalous and slow dynamics of highly polydisperse colloidal suspensions, of which size distribution is chosen to mimic Escherichia coli cytoplasm. We find from our Langevin dynamics simulations that the diffusion coefficient (D_{tot}) and the displacement distribution functions (P(r,t)) averaged over all colloids of different sizes do not show anomalous and glassy dynamic behaviors until the system volume fraction ϕ is increased up to 0.82. This indicates that the intrinsic polydispersity of bacterial cytoplasm should suppress the glass transition and help maintain the liquid state of the cytoplasm. On the other hand, colloids of each kind show totally different dynamic behaviors depending on their size. The dynamics of colloids of different size becomes non-Gaussian at a different range of ϕ, which suggests that a multistep glass transition should occur. The largest colloids undergo the glass transition at ϕ=0.65, while the glass transition does not occur for smaller colloids in our simulations even at the highest value of ϕ. We also investigate the distribution (P(θ,t)) of the relative angles of displacement for macromolecules and find that macromolecules undergo directionally correlated motions in a sufficiently dense system.

摘要

细菌细胞质中存在各种类型的大分子。大分子的尺寸多分散性非常显著,以至于可以抑制结晶和相分离,从而稳定细胞质的液态。另一方面,最近的实验表明,细菌细胞质中的大分子应该表现出玻璃态动力学,这也应该受到大分子尺寸多分散性的显著影响。在这项工作中,我们研究了高度多分散胶体悬浮液的异常和缓慢动力学,其尺寸分布选择模拟大肠杆菌细胞质。我们从朗之万动力学模拟中发现,直到系统体积分数 ϕ 增加到 0.82 时,所有不同大小胶体的扩散系数(D_{tot})和位移分布函数(P(r,t))的平均值才不会表现出异常和玻璃态动力学行为。这表明细菌细胞质的固有多分散性应该抑制玻璃化转变并有助于维持细胞质的液态。另一方面,每种胶体的动力学行为因其尺寸而异而完全不同。不同尺寸胶体的动力学在不同的 ϕ 范围内变得非高斯,这表明应该发生多步玻璃化转变。最大的胶体在 ϕ=0.65 时发生玻璃化转变,而在我们的模拟中,即使在最高 ϕ 值下,较小的胶体也不会发生玻璃化转变。我们还研究了大分子相对位移角的分布(P(θ,t)),并发现大分子在足够密集的系统中会发生定向相关运动。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验