Fairén Alberto G, Losa-Adams Elisabeth, Gil-Lozano Carolina, Gago-Duport Luis, Uceda Esther R, Squyres Steven W, Rodríguez J Alexis P, Davila Alfonso F, McKay Christopher P
Centro de Astrobiología Madrid Spain; Department of Astronomy Cornell University Ithaca New York USA.
Departamento de Geociencias Marinas Universidad de Vigo Vigo Spain.
Geochem Geophys Geosyst. 2015 Apr;16(4):1172-1197. doi: 10.1002/2015GC005748. Epub 2015 Apr 28.
Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-Li and Li-have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals-the source of Li-and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.
锂(Li)是最轻的碱金属元素,具有地球化学性质,包括在水中的高溶解度(Li是流动性最强的元素)以及在玄武岩形成矿物中的相对丰度较高(含量在0.2至12 ppm之间)。锂同位素特别容易发生分馏,因为锂的两种稳定同位素——⁶Li和⁷Li——具有较大的相对质量差(约15%),这导致水相和固相之间出现显著的分馏。玄武岩在水蚀过程中锂同位素的分馏程度取决于原生矿物(锂的来源)的溶解速率以及沉淀动力学,进而导致次生相的形成。因此,对溶液和次生矿物晶格中锂同位素比率进行详细分析,能够提供有关火星过去风化条件的线索,包括风化程度、温度、pH值、过饱和度以及与玄武岩岩石接触的初始溶液的蒸发速率。在本文中,我们讨论了火星水成过程可能导致锂同位素分馏的方式。我们表明,未来火星探测获得的锂同位素数据可能有助于揭示过去锂同位素分馏的不同过程,从而有助于了解该行星历史早期的玄武岩风化和环境状况。