Suppr超能文献

利用锂同位素分馏模型追踪火星玄武岩的风化过程。

Tracking the weathering of basalts on Mars using lithium isotope fractionation models.

作者信息

Fairén Alberto G, Losa-Adams Elisabeth, Gil-Lozano Carolina, Gago-Duport Luis, Uceda Esther R, Squyres Steven W, Rodríguez J Alexis P, Davila Alfonso F, McKay Christopher P

机构信息

Centro de Astrobiología Madrid Spain; Department of Astronomy Cornell University Ithaca New York USA.

Departamento de Geociencias Marinas Universidad de Vigo Vigo Spain.

出版信息

Geochem Geophys Geosyst. 2015 Apr;16(4):1172-1197. doi: 10.1002/2015GC005748. Epub 2015 Apr 28.

Abstract

Lithium (Li), the lightest of the alkali elements, has geochemical properties that include high aqueous solubility (Li is the most fluid mobile element) and high relative abundance in basalt-forming minerals (values ranking between 0.2 and 12 ppm). Li isotopes are particularly subject to fractionation because the two stable isotopes of lithium-Li and Li-have a large relative mass difference (∼15%) that results in significant fractionation between water and solid phases. The extent of Li isotope fractionation during aqueous alteration of basalt depends on the dissolution rate of primary minerals-the source of Li-and on the precipitation kinetics, leading to formation of secondary phases. Consequently, a detailed analysis of Li isotopic ratios in both solution and secondary mineral lattices could provide clues about past Martian weathering conditions, including weathering extent, temperature, pH, supersaturation, and evaporation rate of the initial solutions in contact with basalt rocks. In this paper, we discuss ways in which Martian aqueous processes could have lead to Li isotope fractionation. We show that Li isotopic data obtained by future exploration of Mars could be relevant to highlighting different processes of Li isotopic fractionation in the past, and therefore to understanding basalt weathering and environmental conditions early in the planet's history.

摘要

锂(Li)是最轻的碱金属元素,具有地球化学性质,包括在水中的高溶解度(Li是流动性最强的元素)以及在玄武岩形成矿物中的相对丰度较高(含量在0.2至12 ppm之间)。锂同位素特别容易发生分馏,因为锂的两种稳定同位素——⁶Li和⁷Li——具有较大的相对质量差(约15%),这导致水相和固相之间出现显著的分馏。玄武岩在水蚀过程中锂同位素的分馏程度取决于原生矿物(锂的来源)的溶解速率以及沉淀动力学,进而导致次生相的形成。因此,对溶液和次生矿物晶格中锂同位素比率进行详细分析,能够提供有关火星过去风化条件的线索,包括风化程度、温度、pH值、过饱和度以及与玄武岩岩石接触的初始溶液的蒸发速率。在本文中,我们讨论了火星水成过程可能导致锂同位素分馏的方式。我们表明,未来火星探测获得的锂同位素数据可能有助于揭示过去锂同位素分馏的不同过程,从而有助于了解该行星历史早期的玄武岩风化和环境状况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b7b/5008203/7afc6722db91/GGGE-16-1172-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验