Newton Robert, Giembycz Mark A
Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Department of Physiology and Pharmacology, Airways Inflammation Research Group, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Br J Pharmacol. 2016 Dec;173(24):3405-3430. doi: 10.1111/bph.13628. Epub 2016 Nov 9.
In moderate-to-severe asthma, adding an inhaled long-acting β -adenoceptor agonist (LABA) to an inhaled corticosteroid (ICS) provides better disease control than simply increasing the dose of ICS. Acting on the glucocorticoid receptor (GR, gene NR3C1), ICSs promote anti-inflammatory/anti-asthma gene expression. In vitro, LABAs synergistically enhance the maximal expression of many glucocorticoid-induced genes. Other genes, including dual-specificity phosphatase 1(DUSP1) in human airways smooth muscle (ASM) and epithelial cells, are up-regulated additively by both drug classes. Synergy may also occur for LABA-induced genes, as illustrated by the bronchoprotective gene, regulator of G-protein signalling 2 (RGS2) in ASM. Such effects cannot be produced by either drug alone and may explain the therapeutic efficacy of ICS/LABA combination therapies. While the molecular basis of synergy remains unclear, mechanistic interpretations must accommodate gene-specific regulation. We explore the concept that each glucocorticoid-induced gene is an independent signal transducer optimally activated by a specific, ligand-directed, GR conformation. In addition to explaining partial agonism, this realization provides opportunities to identify novel GR ligands that exhibit gene expression bias. Translating this into improved therapeutic ratios requires consideration of GR density in target tissues and further understanding of gene function. Similarly, the ability of a LABA to interact with a glucocorticoid may be suboptimal due to low β -adrenoceptor density or biased β -adrenoceptor signalling. Strategies to overcome these limitations include adding-on a phosphodiesterase inhibitor and using agonists of other Gs-coupled receptors. In all cases, the rational design of ICS/LABA, and derivative, combination therapies requires functional knowledge of induced (and repressed) genes for therapeutic benefit to be maximized.
在中重度哮喘中,在吸入性糖皮质激素(ICS)基础上加用吸入性长效β-肾上腺素受体激动剂(LABA)比单纯增加ICS剂量能更好地控制疾病。ICS作用于糖皮质激素受体(GR,基因NR3C1),促进抗炎/抗哮喘基因表达。在体外,LABA可协同增强许多糖皮质激素诱导基因的最大表达。其他基因,包括人气道平滑肌(ASM)和上皮细胞中的双特异性磷酸酶1(DUSP1),可被这两类药物相加性上调。LABA诱导的基因也可能发生协同作用,如ASM中的支气管保护基因G蛋白信号调节因子2(RGS2)所示。这些效应单独使用任何一种药物都无法产生,这可能解释了ICS/LABA联合疗法的治疗效果。虽然协同作用的分子基础尚不清楚,但机制解释必须考虑基因特异性调节。我们探讨了这样一个概念,即每个糖皮质激素诱导基因都是一个独立的信号转导器,可被特定的、配体导向的GR构象最佳激活。除了解释部分激动作用外,这一认识还为识别表现出基因表达偏向性的新型GR配体提供了机会。将其转化为更高的治疗指数需要考虑靶组织中的GR密度,并进一步了解基因功能。同样,由于β-肾上腺素受体密度低或β-肾上腺素受体信号偏向,LABA与糖皮质激素相互作用的能力可能不理想。克服这些限制的策略包括加用磷酸二酯酶抑制剂和使用其他Gs偶联受体的激动剂。在所有情况下,ICS/LABA及其衍生联合疗法的合理设计需要对诱导(和抑制)基因有功能上的了解,以使治疗效益最大化。