Suppr超能文献

利用超分辨率显微镜组合技术对T细胞受体与微绒毛进行三维定位

Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies.

作者信息

Jung Yunmin, Riven Inbal, Feigelson Sara W, Kartvelishvily Elena, Tohya Kazuo, Miyasaka Masayuki, Alon Ronen, Haran Gilad

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel.

Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5916-E5924. doi: 10.1073/pnas.1605399113. Epub 2016 Sep 19.

Abstract

Leukocyte microvilli are flexible projections enriched with adhesion molecules. The role of these cellular projections in the ability of T cells to probe antigen-presenting cells has been elusive. In this study, we probe the spatial relation of microvilli and T-cell receptors (TCRs), the major molecules responsible for antigen recognition on the T-cell membrane. To this end, an effective and robust methodology for mapping membrane protein distribution in relation to the 3D surface structure of cells is introduced, based on two complementary superresolution microscopies. Strikingly, TCRs are found to be highly localized on microvilli, in both peripheral blood human T cells and differentiated effector T cells, and are barely found on the cell body. This is a decisive demonstration that different types of T cells universally localize their TCRs to microvilli, immediately pointing to these surface projections as effective sensors for antigenic moieties. This finding also suggests how previously reported membrane clusters might form, with microvilli serving as anchors for specific T-cell surface molecules.

摘要

白细胞微绒毛是富含粘附分子的柔性突起。这些细胞突起在T细胞探测抗原呈递细胞的能力中所起的作用一直难以捉摸。在本研究中,我们探究了微绒毛与T细胞受体(TCR)的空间关系,TCR是T细胞膜上负责抗原识别的主要分子。为此,基于两种互补的超分辨率显微镜技术,引入了一种有效且稳健的方法来绘制与细胞三维表面结构相关的膜蛋白分布。令人惊讶的是,在外周血人类T细胞和分化的效应T细胞中,TCR都高度定位于微绒毛上,而在细胞体上几乎没有发现。这是一个决定性的证明,即不同类型的T细胞普遍将其TCR定位于微绒毛上,这直接表明这些表面突起是抗原部分的有效传感器。这一发现还揭示了先前报道的膜簇可能是如何形成的,微绒毛作为特定T细胞表面分子的锚定物。

相似文献

1
Three-dimensional localization of T-cell receptors in relation to microvilli using a combination of superresolution microscopies.
Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5916-E5924. doi: 10.1073/pnas.1605399113. Epub 2016 Sep 19.
2
ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation.
Cell Rep. 2020 Mar 10;30(10):3434-3447.e6. doi: 10.1016/j.celrep.2020.02.069.
3
T cells use distinct topographical and membrane receptor scanning strategies that individually coalesce during receptor recognition.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2203247119. doi: 10.1073/pnas.2203247119. Epub 2022 Aug 1.
4
The transmembrane domains of L-selectin and CD44 regulate receptor cell surface positioning and leukocyte adhesion under flow.
J Biol Chem. 2010 Apr 30;285(18):13490-7. doi: 10.1074/jbc.M110.102640. Epub 2010 Mar 8.
5
Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling.
Front Immunol. 2020 Sep 11;11:2187. doi: 10.3389/fimmu.2020.02187. eCollection 2020.
7
Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution.
Dev Biol. 2007 Apr 1;304(1):317-25. doi: 10.1016/j.ydbio.2006.12.041. Epub 2006 Dec 23.
10
Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors.
J Cell Biol. 2023 Mar 6;222(3). doi: 10.1083/jcb.202205118. Epub 2022 Dec 15.

引用本文的文献

1
Immunological synapse: structures, molecular mechanisms and therapeutic implications in disease.
Signal Transduct Target Ther. 2025 Aug 11;10(1):254. doi: 10.1038/s41392-025-02332-6.
2
defect reveals insights into microvilli organization and function in T cell immunity.
Proc Natl Acad Sci U S A. 2025 Jul 29;122(30):e2505291122. doi: 10.1073/pnas.2505291122. Epub 2025 Jul 25.
3
Synergy between membrane topography and domains to control signaling protein localization in mast cells facilitates their activation.
Proc Natl Acad Sci U S A. 2025 Jul 22;122(29):e2424427122. doi: 10.1073/pnas.2424427122. Epub 2025 Jul 17.
4
T cell protrusions enable fast, localised initiation of CAR signalling.
bioRxiv. 2025 Jul 9:2025.07.08.662959. doi: 10.1101/2025.07.08.662959.
8
Mechanoregulation of lymphocyte cytotoxicity.
Nat Rev Immunol. 2025 May 1. doi: 10.1038/s41577-025-01173-2.
9
Glycocalyx-induced formation of membrane tubes.
Biophys J. 2025 May 20;124(10):1631-1642. doi: 10.1016/j.bpj.2025.04.006. Epub 2025 Apr 11.
10
Biophysical modeling of membrane curvature generation and curvature sensing by the glycocalyx.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2418357122. doi: 10.1073/pnas.2418357122. Epub 2025 Feb 19.

本文引用的文献

1
Use of TIRF to Monitor T-Lymphocyte Membrane Dynamics with Submicrometer and Subsecond Resolution.
Cell Mol Bioeng. 2015;8(1):178-186. doi: 10.1007/s12195-014-0361-8. Epub 2014 Oct 22.
2
TCR Microclusters pre-exist and contain molecules necessary for TCR signal transduction.
J Immunol. 2014 Jul 1;193(1):56-67. doi: 10.4049/jimmunol.1400315. Epub 2014 May 23.
3
Receptor Pre-Clustering and T cell Responses: Insights into Molecular Mechanisms.
Front Immunol. 2014 Apr 30;5:132. doi: 10.3389/fimmu.2014.00132. eCollection 2014.
4
T cell antigen receptor activation and actin cytoskeleton remodeling.
Biochim Biophys Acta. 2014 Feb;1838(2):546-56. doi: 10.1016/j.bbamem.2013.05.004. Epub 2013 May 14.
5
The actin and tetraspanin networks organize receptor nanoclusters to regulate B cell receptor-mediated signaling.
Immunity. 2013 Mar 21;38(3):461-74. doi: 10.1016/j.immuni.2012.11.019. Epub 2013 Mar 14.
6
Distinct TCR signaling pathways drive proliferation and cytokine production in T cells.
Nat Immunol. 2013 Mar;14(3):262-70. doi: 10.1038/ni.2538. Epub 2013 Feb 3.
9
Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor.
Immunity. 2011 Nov 23;35(5):705-20. doi: 10.1016/j.immuni.2011.10.004. Epub 2011 Nov 4.
10
CD4+ T-cell synapses involve multiple distinct stages.
Proc Natl Acad Sci U S A. 2011 Oct 11;108(41):17099-104. doi: 10.1073/pnas.1113703108. Epub 2011 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验