Institute of Science and Technology Austria, Klosterneuburg 3400, Austria.
MRC Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
Nature. 2016 Sep 29;537(7622):644-648. doi: 10.1038/nature19774. Epub 2016 Sep 21.
Mitochondrial electron transport chain complexes are organized into supercomplexes responsible for carrying out cellular respiration. Here we present three architectures of mammalian (ovine) supercomplexes determined by cryo-electron microscopy. We identify two distinct arrangements of supercomplex CICIIICIV (the respirasome)-a major 'tight' form and a minor 'loose' form (resolved at the resolution of 5.8 Å and 6.7 Å, respectively), which may represent different stages in supercomplex assembly or disassembly. We have also determined an architecture of supercomplex CICIII at 7.8 Å resolution. All observed density can be attributed to the known 80 subunits of the individual complexes, including 132 transmembrane helices. The individual complexes form tight interactions that vary between the architectures, with complex IV subunit COX7a switching contact from complex III to complex I. The arrangement of active sites within the supercomplex may help control reactive oxygen species production. To our knowledge, these are the first complete architectures of the dominant, physiologically relevant state of the electron transport chain.
线粒体电子传递链复合物组织成超级复合物,负责进行细胞呼吸。在这里,我们通过冷冻电子显微镜呈现了三种哺乳动物(绵羊)超级复合物的结构。我们确定了超级复合物 CICIIICIV(呼吸体)的两种不同排列方式-主要的“紧密”形式和较小的“松散”形式(分别在分辨率为 5.8Å 和 6.7Å 下解析),这可能代表了超级复合物组装或拆卸的不同阶段。我们还确定了超级复合物 CICIII 的结构,分辨率为 7.8Å。所有观察到的密度都可以归因于各个复合物的已知 80 个亚基,包括 132 个跨膜螺旋。各个复合物之间形成紧密的相互作用,这些相互作用在结构之间有所不同,其中复合物 IV 亚基 COX7a 将接触从复合物 III 切换到复合物 I。超级复合物内活性位点的排列方式可能有助于控制活性氧物质的产生。据我们所知,这些是电子传递链主要的、生理相关状态的第一个完整结构。