Suppr超能文献

基于聚合物/纸混合微流控生物芯片的无仪器多重脑膜炎诊断

Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip.

作者信息

Dou Maowei, Sanjay Sharma T, Dominguez Delfina C, Liu Peng, Xu Feng, Li XiuJun

机构信息

Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.

College of Health Sciences, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA.

出版信息

Biosens Bioelectron. 2017 Jan 15;87:865-873. doi: 10.1016/j.bios.2016.09.033. Epub 2016 Sep 12.

Abstract

Neisseria meningitidis (N. meningitidis), Streptococcus pneumoniae (S. pneumoniae), and Haemophilus influenzae type b (Hib) are three most common pathogens accounting for most bacterial meningitis, a serious global infectious disease with high fatality, especially in developing nations. Because the treatment and antibiotics differ among each type, the identification of the exact bacteria causing the disease is vital. Herein, we report a polymer/paper hybrid microfluidic biochip integrated with loop-mediated isothermal amplification (LAMP) for multiplexed instrument-free diagnosis of these three major types of bacterial meningitis, with high sensitivity and specificity. Results can be visually observed by the naked eye or imaged by a smartphone camera under a portable UV light source. Without using any specialized laboratory instrument, the limits of detection of a few DNA copies per LAMP zone for N. meningitidis, S. pneumoniae and Hib were achieved within 1h. In addition, these three types of microorganisms spiked in artificial cerebrospinal fluid (ACSF) were directly detected simultaneously, avoiding cumbersome sample preparation procedures in conventional methods. Compared with the paper-free non-hybrid microfluidic biochip over a period of three months, the hybrid microfluidic biochip was found to have a much longer shelf life. Hence, this rapid, instrument-free and highly sensitive microfluidic approach has great potential for point-of-care (POC) diagnosis of multiple infectious diseases simultaneously, especially in resource-limited settings.

摘要

脑膜炎奈瑟菌(N. meningitidis)、肺炎链球菌(S. pneumoniae)和b型流感嗜血杆菌(Hib)是导致大多数细菌性脑膜炎的三种最常见病原体。细菌性脑膜炎是一种严重的全球性传染病,死亡率很高,在发展中国家尤为如此。由于每种类型的治疗方法和抗生素不同,因此确定导致该疾病的确切细菌至关重要。在此,我们报告了一种集成环介导等温扩增(LAMP)的聚合物/纸混合微流控生物芯片,用于对这三种主要类型的细菌性脑膜炎进行多重免仪器诊断,具有高灵敏度和特异性。结果可以用肉眼直观观察,或在便携式紫外光源下用智能手机相机成像。无需使用任何专门的实验室仪器,在1小时内实现了脑膜炎奈瑟菌、肺炎链球菌和Hib每个LAMP区域每升几个DNA拷贝的检测限。此外,直接同时检测了人工脑脊液(ACSF)中添加的这三种微生物,避免了传统方法中繁琐的样品制备程序。与在三个月内使用无纸非混合微流控生物芯片相比,发现混合微流控生物芯片的保质期长得多。因此,这种快速、免仪器且高度灵敏的微流控方法在同时进行多种传染病的即时检测(POC)诊断方面具有巨大潜力,尤其是在资源有限的环境中。

相似文献

1
Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybrid microfluidic biochip.
Biosens Bioelectron. 2017 Jan 15;87:865-873. doi: 10.1016/j.bios.2016.09.033. Epub 2016 Sep 12.
2
A versatile PDMS/paper hybrid microfluidic platform for sensitive infectious disease diagnosis.
Anal Chem. 2014 Aug 5;86(15):7978-86. doi: 10.1021/ac5021694. Epub 2014 Jul 24.

引用本文的文献

1
Molecular diagnostic methods for rapid diagnosis of central nervous system infections.
Front Med Technol. 2025 Apr 22;7:1497512. doi: 10.3389/fmedt.2025.1497512. eCollection 2025.
2
Multiple Cross Displacement Amplification Combined with Real-Time Fluorescence Monitoring for Efficient, Specific, and Sensitive Detection.
ACS Omega. 2024 Dec 3;9(50):49503-49512. doi: 10.1021/acsomega.4c07249. eCollection 2024 Dec 17.
5
Microfluidic platforms integrated with nano-sensors for point-of-care bioanalysis.
Trends Analyt Chem. 2022 Dec;157. doi: 10.1016/j.trac.2022.116806. Epub 2022 Oct 29.
7
A portable system for economical nucleic acid amplification testing.
Front Bioeng Biotechnol. 2023 Aug 2;11:1214624. doi: 10.3389/fbioe.2023.1214624. eCollection 2023.
8
An Integrated Paper Microfluidic Device Based on Isothermal Amplification for Simple Sample-to-Answer Detection of .
Appl Environ Microbiol. 2023 Jul 26;89(7):e0069523. doi: 10.1128/aem.00695-23. Epub 2023 Jun 29.
9
CRISPR Assays for Disease Diagnosis: Progress to and Barriers Remaining for Clinical Applications.
Adv Sci (Weinh). 2023 Jul;10(20):e2301697. doi: 10.1002/advs.202301697. Epub 2023 May 10.
10
Rapid quantitation of SARS-CoV-2 antibodies in clinical samples with an electrochemical sensor.
Biosens Bioelectron. 2023 Mar 1;223:115037. doi: 10.1016/j.bios.2022.115037. Epub 2022 Dec 24.

本文引用的文献

3
Distance-based microfluidic quantitative detection methods for point-of-care testing.
Lab Chip. 2016 Apr 7;16(7):1139-51. doi: 10.1039/c5lc01562f.
5
Controlled Drug Delivery Using Microdevices.
Curr Pharm Biotechnol. 2016;17(9):772-87. doi: 10.2174/1389201017666160127110440.
6
Interfacial nano-biosensing in microfluidic droplets for high-sensitivity detection of low-solubility molecules.
Chem Commun (Camb). 2016 Feb 28;52(17):3470-3. doi: 10.1039/c5cc09066k. Epub 2016 Jan 13.
7
Low-cost bioanalysis on paper-based and its hybrid microfluidic platforms.
Talanta. 2015 Dec 1;145:43-54. doi: 10.1016/j.talanta.2015.04.068. Epub 2015 May 6.
8
Biomarker detection for disease diagnosis using cost-effective microfluidic platforms.
Analyst. 2015 Nov 7;140(21):7062-81. doi: 10.1039/c5an00780a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验