Suppr超能文献

伤口信号传导:植物再生中缺失的环节。

Wound signaling: The missing link in plant regeneration.

作者信息

Chen Lyuqin, Sun Beibei, Xu Lin, Liu Wu

机构信息

a National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai , China.

b University of Chinese Academy of Sciences , Beijing , China.

出版信息

Plant Signal Behav. 2016 Oct 2;11(10):e1238548. doi: 10.1080/15592324.2016.1238548.

Abstract

Wounding is the first event that occurs in plant regeneration. However, wound signaling in plant regeneration is barely understood. Using a simple system of de novo root organogenesis from Arabidopsis thaliana leaf explants, we analyzed the genes downstream of wound signaling. Leaf explants may produce at least two kinds of wound signals to trigger short-term and long-term wound signaling. Short-term wound signaling is primarily involved in controlling auxin behavior and the fate transition of regeneration-competent cells, while long-term wound signaling mainly modulates the cellular environment at the wound site and maintains the auxin level in regeneration-competent cells. YUCCA (YUC) genes, which are involved in auxin biogenesis, are targets of short-term wound signaling in mesophyll cells and of long-term wound signaling in regeneration-competent cells. The expression patterns of YUCs provide important information about the molecular basis of wound signaling in plant regeneration.

摘要

创伤是植物再生过程中发生的首个事件。然而,植物再生中的创伤信号传导却几乎不为人所知。利用拟南芥叶片外植体从头进行根器官发生的简单系统,我们分析了创伤信号传导下游的基因。叶片外植体可能产生至少两种创伤信号,以触发短期和长期创伤信号传导。短期创伤信号传导主要参与控制生长素行为和再生能力细胞的命运转变,而长期创伤信号传导主要调节创伤部位的细胞环境,并维持再生能力细胞中的生长素水平。参与生长素生物合成的YUCCA(YUC)基因是叶肉细胞中短期创伤信号传导以及再生能力细胞中长期创伤信号传导的靶标。YUC基因的表达模式为植物再生中创伤信号传导的分子基础提供了重要信息。

相似文献

1
Wound signaling: The missing link in plant regeneration.
Plant Signal Behav. 2016 Oct 2;11(10):e1238548. doi: 10.1080/15592324.2016.1238548.
4
De novo root regeneration from leaf explants: wounding, auxin, and cell fate transition.
Curr Opin Plant Biol. 2018 Feb;41:39-45. doi: 10.1016/j.pbi.2017.08.004. Epub 2017 Dec 11.
5
Control of de novo root regeneration efficiency by developmental status of Arabidopsis leaf explants.
J Genet Genomics. 2019 Mar 20;46(3):133-140. doi: 10.1016/j.jgg.2019.03.001. Epub 2019 Mar 5.
6
Wound-induced signals regulate root organogenesis in Arabidopsis explants.
BMC Plant Biol. 2022 Mar 22;22(1):133. doi: 10.1186/s12870-022-03524-w.
7
The Molecular Basis of Age-Modulated Plant De Novo Root Regeneration Decline in Arabidopsis thaliana.
Plant Cell Physiol. 2021 Mar 25;62(1):3-7. doi: 10.1093/pcp/pcaa134.
8
ABI3 plays a role in root regeneration from callus cells.
Plant Signal Behav. 2020 Sep 1;15(9):1794147. doi: 10.1080/15592324.2020.1794147. Epub 2020 Jul 14.
9
WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed.
J Plant Res. 2015 May;128(3):389-97. doi: 10.1007/s10265-015-0714-y. Epub 2015 Mar 26.
10
Genetic and epigenetic controls of plant regeneration.
Curr Top Dev Biol. 2014;108:1-33. doi: 10.1016/B978-0-12-391498-9.00009-7.

引用本文的文献

2
SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration.
PLoS Genet. 2022 Jul 13;18(7):e1010285. doi: 10.1371/journal.pgen.1010285. eCollection 2022 Jul.
3
Plant glutamate receptors mediate a bet-hedging strategy between regeneration and defense.
Dev Cell. 2022 Feb 28;57(4):451-465.e6. doi: 10.1016/j.devcel.2022.01.013. Epub 2022 Feb 10.
4
Positively Regulates Onset of Floral Senescence by Responding to Wounding- and Ethylene-Signaling in Rose Plants.
Front Plant Sci. 2021 Nov 5;12:726797. doi: 10.3389/fpls.2021.726797. eCollection 2021.
5
Genome-wide profiling of long noncoding RNAs involved in wheat spike development.
BMC Genomics. 2021 Jul 2;22(1):493. doi: 10.1186/s12864-021-07851-4.
6
Time-course observation of the reconstruction of stem cell niche in the intact root.
Plant Physiol. 2021 Apr 23;185(4):1652-1665. doi: 10.1093/plphys/kiab006.
7
Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration.
Plants (Basel). 2020 Jun 1;9(6):702. doi: 10.3390/plants9060702.
8
AP2/ERF Transcription Factors Integrate Age and Wound Signals for Root Regeneration.
Plant Cell. 2020 Jan;32(1):226-241. doi: 10.1105/tpc.19.00378. Epub 2019 Oct 24.
9
Reinvigoration of diploid strawberry (Fragaria vesca) during adventitious shoot regeneration.
Sci Rep. 2019 Sep 10;9(1):13007. doi: 10.1038/s41598-019-49391-8.
10
Healing of corms and infection.
Plant Signal Behav. 2019;14(10):e1652520. doi: 10.1080/15592324.2019.1652520. Epub 2019 Aug 14.

本文引用的文献

1
Externally imposed electric field enhances plant root tip regeneration.
Regeneration (Oxf). 2016 Aug 20;3(3):156-67. doi: 10.1002/reg2.59. eCollection 2016 Jun.
2
Wound signaling of regenerative cell reprogramming.
Plant Sci. 2016 Sep;250:178-187. doi: 10.1016/j.plantsci.2016.06.012. Epub 2016 Jun 17.
3
Endogenous auxin biosynthesis and de novo root organogenesis.
J Exp Bot. 2016 Jul;67(14):4011-3. doi: 10.1093/jxb/erw250.
5
Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions.
Cell. 2016 Jun 16;165(7):1721-1733. doi: 10.1016/j.cell.2016.04.046. Epub 2016 May 19.
6
Plant regeneration: cellular origins and molecular mechanisms.
Development. 2016 May 1;143(9):1442-51. doi: 10.1242/dev.134668.
7
Identification of WOX Family Genes in Selaginella kraussiana for Studies on Stem Cells and Regeneration in Lycophytes.
Front Plant Sci. 2016 Feb 5;7:93. doi: 10.3389/fpls.2016.00093. eCollection 2016.
9
A Developmental Framework for Graft Formation and Vascular Reconnection in Arabidopsis thaliana.
Curr Biol. 2015 May 18;25(10):1306-18. doi: 10.1016/j.cub.2015.03.032. Epub 2015 Apr 16.
10
Molecular and physiological mechanisms regulating tissue reunion in incised plant tissues.
J Plant Res. 2015 May;128(3):381-8. doi: 10.1007/s10265-015-0705-z. Epub 2015 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验