Saini Savita, Kumar Ghosh Ayan, Singh Ruby, Das Sushmita, Abhishek Kumar, Kumar Ajay, Verma Sudha, Mandal Abhishek, Hasan Sardar Abul, Purkait Bidyut, Kumar Ashish, Kumar Sinha Kislay, Das Pradeep
Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.
Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research, Patna, Bihar, India.
Mol Microbiol. 2016 Dec;102(6):1020-1042. doi: 10.1111/mmi.13534. Epub 2016 Oct 27.
Various physiological stimuli trigger the conversion of noninfective Leishmania donovani promastigotes to the infective form. Here, we present the first evidence of the effect of glucose starvation, on virulence and survival of these parasites. Glucose starvation resulted in a decrease in metabolically active parasites and their proliferation. However, this was reversed by supplementation of gluconeogenic amino acids. Glucose starvation induced metacyclogenesis and enhanced virulence through protein kinase A regulatory subunit (LdPKAR1) mediated autophagy. Glucose starvation driven oxidative stress upregulated the antioxidant machinery, culminating in increased infectivity and greater parasitic load in primary macrophages. Interestingly, phosphoenolpyruvate carboxykinase (LdPEPCK), a gluconeogenic enzyme, exhibited the highest activity under glucose starvation to regulate growth of L. donovani by alternatively utilising amino acids. Deletion of LdPEPCK (Δpepck) decreased virulent traits and parasitic load in primary macrophages but increased autophagosome formation in the mutant parasites. Furthermore, Δpepck parasites failed to activate the Pentose Phosphate Pathway shunt, abrogating NADPH/NADP homoeostasis, conferring increased susceptibility towards oxidants following glucose starvation. In conclusion, this study showed that L. donovani undertakes metabolic rearrangements via gluconeogenesis under glucose starvation for acquiring virulence and its survival in the hostile environment.
多种生理刺激会触发无感染性的杜氏利什曼原虫前鞭毛体向感染性形式的转变。在此,我们首次展示了葡萄糖饥饿对这些寄生虫的毒力和存活影响的证据。葡萄糖饥饿导致代谢活跃的寄生虫数量及其增殖减少。然而,通过补充糖异生氨基酸可逆转这种情况。葡萄糖饥饿通过蛋白激酶A调节亚基(LdPKAR1)介导的自噬诱导后鞭毛体形成并增强毒力。葡萄糖饥饿驱动的氧化应激上调了抗氧化机制,最终导致原代巨噬细胞中的感染性增加和更高的寄生负荷。有趣的是,糖异生酶磷酸烯醇式丙酮酸羧激酶(LdPEPCK)在葡萄糖饥饿条件下表现出最高活性,通过交替利用氨基酸来调节杜氏利什曼原虫的生长。LdPEPCK(Δpepck)的缺失降低了原代巨噬细胞中的毒力特征和寄生负荷,但增加了突变寄生虫中的自噬体形成。此外,Δpepck寄生虫未能激活磷酸戊糖途径分流,破坏了NADPH/NADP稳态,导致葡萄糖饥饿后对氧化剂的敏感性增加。总之,本研究表明,杜氏利什曼原虫在葡萄糖饥饿条件下通过糖异生进行代谢重排,以获得毒力并在恶劣环境中存活。