Zhang Geli, Xiao Xiangming, Dong Jinwei, Kou Weili, Jin Cui, Qin Yuanwei, Zhou Yuting, Wang Jie, Menarguez Michael Angelo, Biradar Chandrashekhar
Department of Microbiology and Plant Biology, and Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA.
Department of Microbiology and Plant Biology, and Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA; Institute of Biodiversity Science, Fudan University, Shanghai 200433, China.
ISPRS J Photogramm Remote Sens. 2015 Aug;106:157-171. doi: 10.1016/j.isprsjprs.2015.05.011. Epub 2015 Jun 12.
Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.
了解水稻的种植区域和空间分布对于评估粮食安全、水资源管理以及估算温室气体(甲烷)排放至关重要。在过去十年中,中国东北地区的水稻种植迅速扩张,但该地区尚无最新的稻田地图。现有的识别稻田算法基于水稻在淹水和移栽阶段的独特物理特征,并使用对冠层动态和地表水含量敏感的植被指数。然而,高纬度地区的淹水现象也可能源于春季融雪洪水。我们利用中分辨率成像光谱仪(MODIS)传感器的陆地表面温度(LST)数据来确定一年中淹水和水稻移栽的时间窗口,以改进现有的基于物候的方法。由于其他土地覆盖类型(如常绿植被、永久性水体和稀疏植被)对水稻识别有潜在影响,且它们具有不同的时间特征,因此被去除(掩膜)。使用高分辨率图像进行的精度评估表明,由此得到的2010年中国东北MODIS衍生稻田地图具有很高的精度(生产者精度和用户精度分别为92%和96%)。基于MODIS的地图在面积和空间格局方面与2010年基于陆地卫星的中国国家土地覆盖数据集(NLCD)的精度相当。本研究表明,我们通过使用MODIS热数据和光学数据改进的算法,为识别和绘制温带和寒温带(水稻种植的北部前沿地区)的稻田提供了一种强大、简单且自动化的方法。