Suppr超能文献

CRISPR-C2c2的两种不同核糖核酸酶活性可实现引导RNA加工和RNA检测。

Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.

作者信息

East-Seletsky Alexandra, O'Connell Mitchell R, Knight Spencer C, Burstein David, Cate Jamie H D, Tjian Robert, Doudna Jennifer A

机构信息

Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.

Department of Chemistry, University of California, Berkeley, California 94720, USA.

出版信息

Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.

Abstract

Bacterial adaptive immune systems use CRISPRs (clustered regularly interspaced short palindromic repeats) and CRISPR-associated (Cas) proteins for RNA-guided nucleic acid cleavage. Although most prokaryotic adaptive immune systems generally target DNA substrates, type III and VI CRISPR systems direct interference complexes against single-stranded RNA substrates. In type VI systems, the single-subunit C2c2 protein functions as an RNA-guided RNA endonuclease (RNase). How this enzyme acquires mature CRISPR RNAs (crRNAs) that are essential for immune surveillance and how it carries out crRNA-mediated RNA cleavage remain unclear. Here we show that bacterial C2c2 possesses a unique RNase activity responsible for CRISPR RNA maturation that is distinct from its RNA-activated single-stranded RNA degradation activity. These dual RNase functions are chemically and mechanistically different from each other and from the crRNA-processing behaviour of the evolutionarily unrelated CRISPR enzyme Cpf1 (ref. 11). The two RNase activities of C2c2 enable multiplexed processing and loading of guide RNAs that in turn allow sensitive detection of cellular transcripts.

摘要

细菌适应性免疫系统利用成簇规律间隔短回文重复序列(CRISPRs)和CRISPR相关(Cas)蛋白进行RNA引导的核酸切割。尽管大多数原核生物适应性免疫系统通常靶向DNA底物,但III型和VI型CRISPR系统会将干扰复合物导向单链RNA底物。在VI型系统中,单亚基C2c2蛋白作为RNA引导的RNA内切核酸酶(RNase)发挥作用。这种酶如何获得对免疫监视至关重要的成熟CRISPR RNA(crRNA),以及它如何进行crRNA介导的RNA切割仍不清楚。在这里,我们表明细菌C2c2具有一种独特的RNase活性,负责CRISPR RNA的成熟,这与其RNA激活的单链RNA降解活性不同。这两种RNase功能在化学和机制上彼此不同,也与进化上不相关的CRISPR酶Cpf1的crRNA加工行为不同。C2c2的两种RNase活性能够对引导RNA进行多重加工和装载,进而实现对细胞转录本的灵敏检测。

相似文献

1
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.
2
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
3
Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
J Mol Biol. 2019 Jan 4;431(1):66-87. doi: 10.1016/j.jmb.2018.06.029. Epub 2018 Jun 22.
4
RNA Targeting by Functionally Orthogonal Type VI-A CRISPR-Cas Enzymes.
Mol Cell. 2017 May 4;66(3):373-383.e3. doi: 10.1016/j.molcel.2017.04.008.
5
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
6
Approaches to study CRISPR RNA biogenesis and the key players involved.
Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17.
7
The crystal structure of Cpf1 in complex with CRISPR RNA.
Nature. 2016 Apr 28;532(7600):522-6. doi: 10.1038/nature17944. Epub 2016 Apr 20.
8
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
9
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
10
Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d.
Nat Commun. 2019 Jun 11;10(1):2544. doi: 10.1038/s41467-019-10507-3.

引用本文的文献

1
A De Novo Luciferase Bioconjugate for the Cas13-Based Detection of Influenza A.
JACS Au. 2025 Jul 28;5(8):3914-3925. doi: 10.1021/jacsau.5c00576. eCollection 2025 Aug 25.
3
Viral and nonviral nanocarriers for CRISPR-based gene editing.
Nano Res. 2024 Oct;17(10):8904-8925. doi: 10.1007/s12274-024-6748-5. Epub 2024 Jun 20.
5
Trends and challenges of AAV-delivered gene editing therapeutics for CNS disorders: Implications for neurodegenerative disease.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102635. doi: 10.1016/j.omtn.2025.102635. eCollection 2025 Sep 9.
6
A streamlined CRISPR-based test for tuberculosis detection directly from sputum.
Sci Adv. 2025 Aug 8;11(32):eadx2067. doi: 10.1126/sciadv.adx2067. Epub 2025 Aug 6.
7
Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays.
Sci Rep. 2025 Jul 31;15(1):27950. doi: 10.1038/s41598-025-09434-9.
8
Methods and applications of in vivo CRISPR screening.
Nat Rev Genet. 2025 Jul 29. doi: 10.1038/s41576-025-00873-8.
9
Cas13d-mediated isoform-specific RNA knockdown with a unified computational and experimental toolbox.
Nat Commun. 2025 Jul 29;16(1):6948. doi: 10.1038/s41467-025-62066-5.
10
Integrating AI and CRISPR Cas13a for rapid detection of tomato brown rugose fruit virus.
Sci Rep. 2025 Jul 14;15(1):25422. doi: 10.1038/s41598-025-11405-z.

本文引用的文献

1
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector.
Science. 2016 Aug 5;353(6299):aaf5573. doi: 10.1126/science.aaf5573. Epub 2016 Jun 2.
2
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.
Nature. 2016 Apr 28;532(7600):517-21. doi: 10.1038/nature17945. Epub 2016 Apr 20.
3
Multiple nucleic acid cleavage modes in divergent type III CRISPR systems.
Nucleic Acids Res. 2016 Feb 29;44(4):1789-99. doi: 10.1093/nar/gkw020. Epub 2016 Jan 21.
4
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
5
Structural basis for the endoribonuclease activity of the type III-A CRISPR-associated protein Csm6.
RNA. 2016 Mar;22(3):318-29. doi: 10.1261/rna.054098.115. Epub 2016 Jan 13.
6
The CRISPR-associated Csx1 protein of Pyrococcus furiosus is an adenosine-specific endoribonuclease.
RNA. 2016 Feb;22(2):216-24. doi: 10.1261/rna.039842.113. Epub 2015 Dec 8.
7
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
Mol Cell. 2015 Nov 5;60(3):385-97. doi: 10.1016/j.molcel.2015.10.008. Epub 2015 Oct 22.
8
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity.
FEMS Microbiol Rev. 2015 May;39(3):428-41. doi: 10.1093/femsre/fuv023. Epub 2015 May 19.
9
Co-transcriptional DNA and RNA Cleavage during Type III CRISPR-Cas Immunity.
Cell. 2015 May 21;161(5):1164-1174. doi: 10.1016/j.cell.2015.04.027. Epub 2015 May 7.
10
Oligoadenylate synthase-like (OASL) proteins: dual functions and associations with diseases.
Exp Mol Med. 2015 Mar 6;47(3):e144. doi: 10.1038/emm.2014.110.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验