Suppr超能文献

氧化还原信号传导中的蛋白质半胱氨酸氧化:亚磺酸检测与定量的注意事项

Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.

作者信息

Forman Henry Jay, Davies Michael J, Krämer Anna C, Miotto Giovanni, Zaccarin Mattia, Zhang Hongqiao, Ursini Fulvio

机构信息

Andrus Gerontology Center of the Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089-0191, USA.

Department of Biomedical Science, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark.

出版信息

Arch Biochem Biophys. 2017 Mar 1;617:26-37. doi: 10.1016/j.abb.2016.09.013. Epub 2016 Sep 28.

Abstract

Oxidation of critical signaling protein cysteines regulated by HO has been considered to involve sulfenic acid (RSOH) formation. RSOH may subsequently form either a sulfenyl amide (RSNHR') with a neighboring amide, or a mixed disulfide (RSSR') with another protein cysteine or glutathione. Previous studies have claimed that RSOH can be detected as an adduct (e.g., with 5,5-dimethylcyclohexane-1,3-dione; dimedone). Here, kinetic data are discussed which indicate that few proteins can form RSOH under physiological signaling conditions. We also present experimental evidence that indicates that (1) dimedone reacts rapidly with sulfenyl amides, and more rapidly than with sulfenic acids, and (2) that disulfides can react reversibly with amides to form sulfenyl amides. As some proteins are more stable as the sulfenyl amide than as a glutathionylated species, the former may account for some of the species previously identified as the "sulfenome" - the cellular complement of reversibly-oxidized thiol proteins generated via sulfenic acids.

摘要

由血红素加氧酶(HO)调节的关键信号蛋白半胱氨酸的氧化被认为涉及亚磺酸(RSOH)的形成。RSOH随后可能与相邻的酰胺形成亚磺酰胺(RSNHR'),或与另一种蛋白质半胱氨酸或谷胱甘肽形成混合二硫键(RSSR')。先前的研究声称,RSOH可以作为加合物被检测到(例如,与5,5-二甲基环己烷-1,3-二酮;二甲基酮反应)。在这里,我们讨论了动力学数据,这些数据表明在生理信号条件下很少有蛋白质能形成RSOH。我们还提供了实验证据表明:(1)二甲基酮与亚磺酰胺反应迅速,且比亚磺酸反应更快;(2)二硫键可以与酰胺可逆反应形成亚磺酰胺。由于一些蛋白质作为亚磺酰胺比作为谷胱甘肽化物种更稳定,前者可能解释了一些先前被鉴定为“亚磺基蛋白质组”的物种——通过亚磺酸产生的可逆氧化硫醇蛋白的细胞补体。

相似文献

1
Protein cysteine oxidation in redox signaling: Caveats on sulfenic acid detection and quantification.
Arch Biochem Biophys. 2017 Mar 1;617:26-37. doi: 10.1016/j.abb.2016.09.013. Epub 2016 Sep 28.
3
Protein topology determines cysteine oxidation fate: the case of sulfenyl amide formation among protein families.
PLoS Comput Biol. 2015 Mar 5;11(3):e1004051. doi: 10.1371/journal.pcbi.1004051. eCollection 2015 Mar.
4
Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.
Biochemistry. 2003 Aug 26;42(33):9906-14. doi: 10.1021/bi027434m.
5
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
6
The role of sulfenic acids in cellular redox signaling: Reconciling chemical kinetics and molecular detection strategies.
Arch Biochem Biophys. 2017 Feb 15;616:40-46. doi: 10.1016/j.abb.2017.01.008. Epub 2017 Jan 23.
7
Widespread sulfenic acid formation in tissues in response to hydrogen peroxide.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):17982-7. doi: 10.1073/pnas.0404762101. Epub 2004 Dec 16.
8
Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
Biochemistry. 2003 Sep 2;42(34):10060-70. doi: 10.1021/bi0345081.
9
Formation and reactions of sulfenic acid in human serum albumin.
Methods Enzymol. 2010;473:117-36. doi: 10.1016/S0076-6879(10)73005-6.
10
Reactivity of sulfenic acid in human serum albumin.
Biochemistry. 2008 Jan 8;47(1):358-67. doi: 10.1021/bi701520y. Epub 2007 Dec 14.

引用本文的文献

1
Research progress of deubiquitinating enzymes in cerebral ischemia-reperfusion injury.
Front Aging Neurosci. 2025 Jun 2;17:1588920. doi: 10.3389/fnagi.2025.1588920. eCollection 2025.
3
Ten "Cheat Codes" for Measuring Oxidative Stress in Humans.
Antioxidants (Basel). 2024 Jul 22;13(7):877. doi: 10.3390/antiox13070877.
4
GAPDH inhibition mediated by thiol oxidation in human airway epithelial cells exposed to an environmental peroxide.
Redox Biol. 2024 Jul;73:103199. doi: 10.1016/j.redox.2024.103199. Epub 2024 May 17.
6
FRBM Mini REVIEW: Chemogenetic approaches to probe redox dysregulation in heart failure.
Free Radic Biol Med. 2024 May 1;217:173-178. doi: 10.1016/j.freeradbiomed.2024.03.027. Epub 2024 Mar 31.
7
Interactions between zinc and NRF2 in vascular redox signalling.
Biochem Soc Trans. 2024 Feb 28;52(1):269-278. doi: 10.1042/BST20230490.
8
The Antioxidant Properties of Glucosinolates in Cardiac Cells Are Independent of HS Signaling.
Int J Mol Sci. 2024 Jan 5;25(2):696. doi: 10.3390/ijms25020696.
9
Substrate-dependent metabolomic signatures of myeloperoxidase activity in airway epithelial cells: Implications for early cystic fibrosis lung disease.
Free Radic Biol Med. 2023 Sep;206:180-190. doi: 10.1016/j.freeradbiomed.2023.06.021. Epub 2023 Jun 23.

本文引用的文献

1
Key role of cysteine residues and sulfenic acids in thermal- and H2O2-mediated modification of β-lactoglobulin.
Free Radic Biol Med. 2016 Aug;97:544-555. doi: 10.1016/j.freeradbiomed.2016.07.010. Epub 2016 Jul 16.
2
Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells.
Redox Biol. 2016 Aug;8:375-82. doi: 10.1016/j.redox.2016.03.005. Epub 2016 Mar 26.
3
Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
Redox Biol. 2016 Aug;8:110-8. doi: 10.1016/j.redox.2015.12.010. Epub 2015 Dec 31.
4
Glutathionylation of the Active Site Cysteines of Peroxiredoxin 2 and Recycling by Glutaredoxin.
J Biol Chem. 2016 Feb 5;291(6):3053-62. doi: 10.1074/jbc.M115.692798. Epub 2015 Nov 24.
5
One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates.
Free Radic Res. 2016;50(2):150-71. doi: 10.3109/10715762.2015.1089988. Epub 2015 Nov 11.
6
Thiyl radicals and induction of protein degradation.
Free Radic Res. 2016;50(2):143-9. doi: 10.3109/10715762.2015.1077385. Epub 2015 Aug 28.
7
Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study.
Free Radic Biol Med. 2015 Oct;87:1-14. doi: 10.1016/j.freeradbiomed.2015.06.011. Epub 2015 Jul 8.
8
Global, in situ, site-specific analysis of protein S-sulfenylation.
Nat Protoc. 2015 Jul;10(7):1022-37. doi: 10.1038/nprot.2015.062. Epub 2015 Jun 18.
9
Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?
Biol Chem. 2015 May;396(5):523-37. doi: 10.1515/hsz-2014-0295.
10
Peroxiredoxin-2 and STAT3 form a redox relay for H2O2 signaling.
Nat Chem Biol. 2015 Jan;11(1):64-70. doi: 10.1038/nchembio.1695. Epub 2014 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验