Park Heetaek, Jung Keeyoung, Nezafati Marjan, Kim Chang-Soo, Kang Byoungwoo
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) , Po-hang, Gyeongbuk 790-784, South Korea.
Energy Storage Materials Research Center, Research Institute of Industrial Science and Technology (RIST) , Pohang, Gyeongbuk 790-330, South Korea.
ACS Appl Mater Interfaces. 2016 Oct 19;8(41):27814-27824. doi: 10.1021/acsami.6b09992. Epub 2016 Oct 4.
The Na superionic conductor (aka Nasicon, NaZrSiPO, where 0 ≤ x ≤ 3) is one of the promising solid electrolyte materials used in advanced molten Na-based secondary batteries that typically operate at high temperature (over ∼270 °C). Nasicon provides a 3D diffusion network allowing the transport of the active Na-ion species (i.e., ionic conductor) while blocking the conduction of electrons (i.e., electronic insulator) between the anode and cathode compartments of cells. In this work, the standard Nasicon (NaZrSiPO, bare sample) and 10 at% Na-excess Nasicon (NaZrSiPO, Na-excess sample) solid electrolytes were synthesized using a solid-state sintering technique to elucidate the Na diffusion mechanism (i.e., grain diffusion or grain boundary diffusion) and the impacts of adding excess Na at relatively low and high temperatures. The structural, thermal, and ionic transport characterizations were conducted using various experimental tools including X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). In addition, an ab initio atomistic modeling study was carried out to computationally examine the detailed microstructures of Nasicon materials, as well as to support the experimental observations. Through this combination work comprising experimental and computational investigations, we show that the predominant mechanisms of Na-ion transport in the Nasicon structure are the grain boundary and the grain diffusion at low and high temperatures, respectively. Also, it was found that adding 10 at% excess Na could give rise to a substantial increase in the total conductivity (e.g., ∼1.2 × 10 S/cm at 300 °C) of Nasicon electrolytes resulting from the enlargement of the bottleneck areas in the Na diffusion channels of polycrystalline grains.
钠超离子导体(又称NASICON,NaZrSiPO,其中0≤x≤3)是用于先进的高温(约270°C以上)熔融钠基二次电池的有前景的固体电解质材料之一。NASICON提供了一个三维扩散网络,允许活性钠离子(即离子导体)传输,同时阻止电池阳极和阴极室之间电子的传导(即电子绝缘体)。在这项工作中,使用固态烧结技术合成了标准NASICON(NaZrSiPO,裸样品)和10原子%过量钠的NASICON(NaZrSiPO,过量钠样品)固体电解质,以阐明钠扩散机制(即晶粒扩散或晶界扩散)以及在相对低温和高温下添加过量钠的影响。使用包括X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电子显微镜(SEM)和电化学阻抗谱(EIS)等各种实验工具进行了结构、热和离子传输表征。此外,还进行了从头算原子模型研究,以通过计算检查NASICON材料的详细微观结构,并支持实验观察结果。通过这项包括实验和计算研究的综合工作,我们表明,NASICON结构中钠离子传输的主要机制分别是低温下的晶界扩散和高温下的晶粒扩散。此外,还发现添加10原子%的过量钠会导致NASICON电解质的总电导率大幅增加(例如,在300°C时约为1.2×10 S/cm),这是由于多晶晶粒钠扩散通道中瓶颈区域的扩大所致。