Suppr超能文献

沿肾单位的溶质转运和氧消耗:Na+转运抑制剂的作用。

Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.

作者信息

Layton Anita T, Laghmani Kamel, Vallon Volker, Edwards Aurélie

机构信息

Department of Mathematics, Duke University, Durham, North Carolina;

Sorbonne Universités, UPMC Univ Paris 06, Université Paris Descartes, Sorbonne Paris Cité, INSERM UMRS 1138, CNRS ERL 8228, Centre de Recherche des Cordeliers, Paris, France; and.

出版信息

Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.

Abstract

Sodium and its associated anions are the major determinant of extracellular fluid volume, and the reabsorption of Na by the kidney plays a crucial role in long-term blood pressure control. The goal of this study was to investigate the extent to which inhibitors of transepithelial Na transport (T) along the nephron alter urinary solute excretion and T efficiency and how those effects may vary along different nephron segments. To accomplish that goal, we used the multinephron model developed in the companion study (28). That model represents detailed transcellular and paracellular transport processes along the nephrons of a rat kidney. We simulated the inhibition of the Na/H exchanger (NHE3), the bumetanide-sensitive Na-K-2Cl transporter (NKCC2), the Na-Cl cotransporter (NCC), and the amiloride-sensitive Na channel (ENaC). Under baseline conditions, NHE3, NKCC2, NCC, and ENaC reabsorb 36, 22, 4, and 7%, respectively, of filtered Na The model predicted that inhibition of NHE3 substantially reduced proximal tubule T and oxygen consumption (Q ). Whole-kidney T efficiency, as reflected by the number of moles of Na reabsorbed per moles of O consumed (denoted by the ratio T/Q ), decreased by ∼20% with 80% inhibition of NHE3. NKCC2 inhibition simulations predicted a substantial reduction in thick ascending limb T and Q ; however, the effect on whole-kidney T/Q was minor. Tubular K transport was also substantially impaired, resulting in elevated urinary K excretion. The most notable effect of NCC inhibition was to increase the excretion of Na, K, and Cl; its impact on whole-kidney T and its efficiency was minor. Inhibition of ENaC was predicted to have opposite effects on the excretion of Na (increased) and K (decreased) and to have only a minor impact on whole-kidney T and T/Q Overall, model predictions agree well with measured changes in Na and K excretion in response to diuretics and Na transporter mutations.

摘要

钠及其相关阴离子是细胞外液量的主要决定因素,肾脏对钠的重吸收在长期血压控制中起着关键作用。本研究的目的是调查沿肾单位的跨上皮钠转运(T)抑制剂在多大程度上改变尿溶质排泄和T效率,以及这些影响在不同肾单位节段可能如何变化。为实现该目标,我们使用了在配套研究(28)中开发的多肾单位模型。该模型代表了大鼠肾脏肾单位沿程详细的跨细胞和细胞旁转运过程。我们模拟了钠/氢交换体(NHE3)、布美他尼敏感的钠-钾-2氯转运体(NKCC2)、钠-氯共转运体(NCC)和阿米洛利敏感的钠通道(ENaC)的抑制情况。在基线条件下,NHE3、NKCC2、NCC和ENaC分别重吸收滤过钠的36%、22%、4%和7%。该模型预测,抑制NHE3会显著降低近端小管T和氧消耗(Q)。以每消耗1摩尔氧重吸收的钠摩尔数表示的全肾T效率(用T/Q比值表示),在NHE3受到80%抑制时下降约20%。NKCC2抑制模拟预测髓袢升支粗段T和Q会大幅降低;然而,对全肾T/Q的影响较小。肾小管钾转运也受到显著损害,导致尿钾排泄增加。NCC抑制最显著的作用是增加钠、钾和氯的排泄;其对全肾T及其效率的影响较小。预测ENaC抑制对钠(增加)和钾(减少)的排泄有相反作用,对全肾T和T/Q只有轻微影响。总体而言,模型预测与利尿剂和钠转运体突变后钠和钾排泄的实测变化非常吻合。

相似文献

1
Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1217-F1229. doi: 10.1152/ajprenal.00294.2016. Epub 2016 Oct 5.
2
Sex differences in solute transport along the nephrons: effects of Na transport inhibition.
Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F487-F505. doi: 10.1152/ajprenal.00240.2020. Epub 2020 Aug 3.
3
A computational model for simulating solute transport and oxygen consumption along the nephrons.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.
4
Regulation of renal Na transporters in response to dietary K.
Am J Physiol Renal Physiol. 2018 Oct 1;315(4):F1032-F1041. doi: 10.1152/ajprenal.00117.2018. Epub 2018 Jun 20.
5
Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1343-57. doi: 10.1152/ajprenal.00007.2015. Epub 2015 Apr 8.
6
Impact of angiotensin II-mediated stimulation of sodium transporters in the nephron assessed by computational modeling.
Am J Physiol Renal Physiol. 2019 Dec 1;317(6):F1656-F1668. doi: 10.1152/ajprenal.00335.2019. Epub 2019 Oct 28.
7
Tubuloglomerular and connecting tubuloglomerular feedback during inhibition of various Na transporters in the nephron.
Am J Physiol Renal Physiol. 2015 May 1;308(9):F1026-31. doi: 10.1152/ajprenal.00605.2014. Epub 2015 Feb 25.
8
Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron.
Am J Physiol Renal Physiol. 2016 Jun 1;310(11):F1269-83. doi: 10.1152/ajprenal.00543.2015. Epub 2016 Jan 13.
9
Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition.
Am J Physiol Renal Physiol. 2013 Aug 15;305(4):F510-9. doi: 10.1152/ajprenal.00183.2013. Epub 2013 May 29.
10
Time course of renal Na-K-ATPase, NHE3, NKCC2, NCC, and ENaC abundance changes with dietary NaCl restriction.
Am J Physiol Renal Physiol. 2002 Oct;283(4):F648-57. doi: 10.1152/ajprenal.00016.2002.

引用本文的文献

1
Combination therapy: an upcoming paradigm to improve kidney and cardiovascular outcomes in chronic kidney disease.
Nephrol Dial Transplant. 2025 Feb 5;40(Supplement_1):i3-i17. doi: 10.1093/ndt/gfae212.
2
Sex and circadian regulation of metabolic demands in the rat kidney: A modeling analysis.
PLoS One. 2024 Jul 17;19(7):e0293419. doi: 10.1371/journal.pone.0293419. eCollection 2024.
3
State-of-the-Art-Review: Mechanisms of Action of SGLT2 Inhibitors and Clinical Implications.
Am J Hypertens. 2024 Oct 14;37(11):841-852. doi: 10.1093/ajh/hpae092.
5
How the kidney regulates magnesium: a modelling study.
R Soc Open Sci. 2024 Mar 20;11(3):231484. doi: 10.1098/rsos.231484. eCollection 2024 Mar.
6
Predicting sex differences in the effects of diuretics in renal epithelial transport during angiotensin II-induced hypertension.
Am J Physiol Renal Physiol. 2024 May 1;326(5):F737-F750. doi: 10.1152/ajprenal.00398.2023. Epub 2024 Mar 14.
7
Optimization of guideline-directed medical therapies in patients with diabetes and chronic kidney disease.
Clin Kidney J. 2023 Nov 16;17(1):sfad285. doi: 10.1093/ckj/sfad285. eCollection 2024 Jan.
8
Insulin Secretion, Sensitivity, and Kidney Function in Young Individuals With Type 2 Diabetes.
Diabetes Care. 2024 Mar 1;47(3):409-417. doi: 10.2337/dc23-1818.
9
Sex differences in renal transporters: assessment and functional consequences.
Nat Rev Nephrol. 2024 Jan;20(1):21-36. doi: 10.1038/s41581-023-00757-2. Epub 2023 Sep 8.

本文引用的文献

1
A computational model for simulating solute transport and oxygen consumption along the nephrons.
Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1378-F1390. doi: 10.1152/ajprenal.00293.2016. Epub 2016 Oct 5.
2
Everything we always wanted to know about furosemide but were afraid to ask.
Am J Physiol Renal Physiol. 2016 May 1;310(10):F958-71. doi: 10.1152/ajprenal.00476.2015. Epub 2016 Feb 24.
3
Mini-review: regulation of the renal NaCl cotransporter by hormones.
Am J Physiol Renal Physiol. 2016 Jan 1;310(1):F10-4. doi: 10.1152/ajprenal.00354.2015. Epub 2015 Oct 28.
4
Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition.
Am J Physiol Renal Physiol. 2015 Jun 15;308(12):F1343-57. doi: 10.1152/ajprenal.00007.2015. Epub 2015 Apr 8.
5
Regulation of blood pressure and renal function by NCC and ENaC: lessons from genetically engineered mice.
Curr Opin Pharmacol. 2015 Apr;21:60-72. doi: 10.1016/j.coph.2014.12.012. Epub 2015 Jan 20.
6
Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition.
Am J Physiol Renal Physiol. 2013 Aug 15;305(4):F510-9. doi: 10.1152/ajprenal.00183.2013. Epub 2013 May 29.
7
Proximal tubule Na+/H+ exchanger activity in adult NHE8-/-, NHE3-/-, and NHE3-/-/NHE8-/- mice.
Am J Physiol Renal Physiol. 2012 Dec 1;303(11):F1495-502. doi: 10.1152/ajprenal.00415.2012. Epub 2012 Oct 10.
8
Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system.
Am J Physiol Renal Physiol. 2011 Sep;301(3):F463-75. doi: 10.1152/ajprenal.00236.2011. Epub 2011 Jun 29.
9
Diuretic treatment of hypertension.
Diabetes Care. 2011 May;34 Suppl 2(Suppl 2):S313-9. doi: 10.2337/dc11-s246.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验