Suppr超能文献

结合结构和毒理学特性开发化学类别的创新策略。

Innovative Strategies to Develop Chemical Categories Using a Combination of Structural and Toxicological Properties.

作者信息

Batke Monika, Gütlein Martin, Partosch Falko, Gundert-Remy Ursula, Helma Christoph, Kramer Stefan, Maunz Andreas, Seeland Madeleine, Bitsch Annette

机构信息

Department Chemikalienbeureilung, Dantenbanken und Expertensysteme, Fraunhofer Institut für Toxikologie und Experimentelle Medizin Hannover, Germany.

Institut für Informatik, Johannes Gutenberg-Universität Mainz Mainz, Germany.

出版信息

Front Pharmacol. 2016 Sep 21;7:321. doi: 10.3389/fphar.2016.00321. eCollection 2016.

Abstract

Interest is increasing in the development of non-animal methods for toxicological evaluations. These methods are however, particularly challenging for complex toxicological endpoints such as repeated dose toxicity. European Legislation, e.g., the European Union's Cosmetic Directive and REACH, demands the use of alternative methods. Frameworks, such as the Read-across Assessment Framework or the Adverse Outcome Pathway Knowledge Base, support the development of these methods. The aim of the project presented in this publication was to develop substance categories for a read-across with complex endpoints of toxicity based on existing databases. The basic conceptual approach was to combine structural similarity with shared mechanisms of action. Substances with similar chemical structure and toxicological profile form candidate categories suitable for read-across. We combined two databases on repeated dose toxicity, RepDose database, and ELINCS database to form a common database for the identification of categories. The resulting database contained physicochemical, structural, and toxicological data, which were refined and curated for cluster analyses. We applied the Predictive Clustering Tree (PCT) approach for clustering chemicals based on structural and on toxicological information to detect groups of chemicals with similar toxic profiles and pathways/mechanisms of toxicity. As many of the experimental toxicity values were not available, this data was imputed by predicting them with a multi-label classification method, prior to clustering. The clustering results were evaluated by assessing chemical and toxicological similarities with the aim of identifying clusters with a concordance between structural information and toxicity profiles/mechanisms. From these chosen clusters, seven were selected for a quantitative read-across, based on a small ratio of NOAEL of the members with the highest and the lowest NOAEL in the cluster (< 5). We discuss the limitations of the approach. Based on this analysis we propose improvements for a follow-up approach, such as incorporation of metabolic information and more detailed mechanistic information. The software enables the user to allocate a substance in a cluster and to use this information for a possible read- across. The clustering tool is provided as a free web service, accessible at http://mlc-reach.informatik.uni-mainz.de.

摘要

对于毒理学评估中非动物方法的开发,人们的兴趣与日俱增。然而,这些方法对于诸如重复剂量毒性等复杂的毒理学终点而言,尤其具有挑战性。欧洲法规,例如欧盟的《化妆品指令》和《化学品注册、评估、授权和限制法规》(REACH),要求使用替代方法。诸如“类推评估框架”或“不良结局途径知识库”等框架,支持这些方法的开发。本出版物中所介绍项目的目的,是基于现有数据库,针对具有复杂毒性终点的类推法开发物质类别。基本的概念方法是将结构相似性与共享的作用机制相结合。具有相似化学结构和毒理学特征的物质形成适合类推的候选类别。我们将两个关于重复剂量毒性的数据库,即“重复剂量数据库”(RepDose database)和“欧洲现有商业化学物质目录”(ELINCS database)合并,以形成一个用于类别识别的通用数据库。所得数据库包含物理化学、结构和毒理学数据,这些数据经过提炼和整理以用于聚类分析。我们应用预测聚类树(PCT)方法,基于结构和毒理学信息对化学品进行聚类,以检测具有相似毒性特征以及毒性途径/机制的化学品组。由于许多实验毒性值不可用,在聚类之前,通过使用多标签分类方法预测这些数据来进行估算。通过评估化学和毒理学相似性来评估聚类结果,目的是识别在结构信息与毒性特征/机制之间具有一致性的聚类。从这些选定的聚类中,基于聚类中最高和最低无观察到有害作用水平(NOAEL)的成员的NOAEL比值较小(<5),选择了七个进行定量类推。我们讨论了该方法的局限性。基于此分析,我们提出了后续方法的改进建议,例如纳入代谢信息和更详细的作用机制信息。该软件使用户能够将一种物质归入一个聚类,并利用此信息进行可能的类推。聚类工具作为免费网络服务提供,可通过http://mlc-reach.informatik.uni-mainz.de访问。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验