Suppr超能文献

基于异常值检测异常的患者管理行为:一项重症监护病房研究。

Outlier-based detection of unusual patient-management actions: An ICU study.

作者信息

Hauskrecht Milos, Batal Iyad, Hong Charmgil, Nguyen Quang, Cooper Gregory F, Visweswaran Shyam, Clermont Gilles

机构信息

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA; The Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA; Yahoo Research, San Francisco, CA, USA.

出版信息

J Biomed Inform. 2016 Dec;64:211-221. doi: 10.1016/j.jbi.2016.10.002. Epub 2016 Oct 5.

Abstract

Medical errors remain a significant problem in healthcare. This paper investigates a data-driven outlier-based monitoring and alerting framework that uses data in the Electronic Medical Records (EMRs) repositories of past patient cases to identify any unusual clinical actions in the EMR of a current patient. Our conjecture is that these unusual clinical actions correspond to medical errors often enough to justify their detection and alerting. Our approach works by using EMR repositories to learn statistical models that relate patient states to patient-management actions. We evaluated this approach on the EMR data for 24,658 intensive care unit (ICU) patient cases. A total of 16,500 cases were used to train statistical models for ordering medications and laboratory tests given the patient state summarizing the patient's clinical history. The models were applied to a separate test set of 8158 ICU patient cases and used to generate alerts. A subset of 240 alerts generated by the models were evaluated and assessed by eighteen ICU clinicians. The overall true positive rates for the alerts (TPARs) ranged from 0.44 to 0.71. The TPAR for medication order alerts specifically ranged from 0.31 to 0.61 and for laboratory order alerts from 0.44 to 0.75. These results support outlier-based alerting as a promising new approach to data-driven clinical alerting that is generated automatically based on past EMR data.

摘要

医疗差错仍是医疗保健领域的一个重大问题。本文研究了一种基于数据驱动的异常值监测与警报框架,该框架利用过去患者病例的电子病历(EMR)存储库中的数据,来识别当前患者电子病历中任何异常的临床行为。我们推测,这些异常的临床行为通常与医疗差错相对应,足以证明对其进行检测和发出警报是合理的。我们的方法是通过使用电子病历存储库来学习将患者状态与患者管理行为相关联的统计模型。我们在24658例重症监护病房(ICU)患者病例的电子病历数据上评估了这种方法。总共16500例病例用于训练统计模型,以便在总结患者临床病史的患者状态下进行药物订购和实验室检查。这些模型被应用于一个由8158例ICU患者病例组成的单独测试集,并用于生成警报。由这些模型生成的240个警报的一个子集由18名ICU临床医生进行了评估。警报的总体真阳性率(TPAR)范围为0.44至0.71。药物订购警报的TPAR具体范围为0.31至0.61,实验室订购警报的TPAR范围为0.44至0.75。这些结果支持基于异常值的警报作为一种有前景的新方法,用于基于过去的电子病历数据自动生成的数据驱动临床警报。

相似文献

3
Outlier detection for patient monitoring and alerting.患者监测和报警的异常值检测。
J Biomed Inform. 2013 Feb;46(1):47-55. doi: 10.1016/j.jbi.2012.08.004. Epub 2012 Aug 27.

引用本文的文献

4
The Role of Data Science in Closing the Implementation Gap.数据科学在弥合实施差距中的作用。
Crit Care Clin. 2023 Oct;39(4):701-716. doi: 10.1016/j.ccc.2023.03.005. Epub 2023 Apr 7.
5
Personalized event prediction for Electronic Health Records.电子健康记录的个性化事件预测。
Artif Intell Med. 2023 Sep;143:102620. doi: 10.1016/j.artmed.2023.102620. Epub 2023 Jul 20.

本文引用的文献

1
Conditional Anomaly Detection with Soft Harmonic Functions.基于软调和函数的条件异常检测
Proc IEEE Int Conf Data Min. 2011;2011:735-743. doi: 10.1109/ICDM.2011.40.
4
Outlier detection for patient monitoring and alerting.患者监测和报警的异常值检测。
J Biomed Inform. 2013 Feb;46(1):47-55. doi: 10.1016/j.jbi.2012.08.004. Epub 2012 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验