Mai Yun, Yu J Jessica, Bartholdy Boris, Xu-Monette Zijun Y, Knapp Esther E, Yuan Fei, Chen Hongshan, Ding B Belinda, Yao Zhihua, Das Bhaskar, Zou Yiyu, Young Ken He, Parekh Samir, Ye B Hilda
Department of Cell Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, NY.
Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
Blood. 2016 Dec 15;128(24):2797-2807. doi: 10.1182/blood-2016-03-705814. Epub 2016 Oct 13.
Diffuse large B-cell lymphomas (DLBCLs) contain 2 major molecular subtypes; namely, the germinal center B-cell-like (GCB) and the activated B-cell-like (ABC) DLBCLs. It is well documented that ABC-DLBCL cases have a significantly poorer survival response than GCB-DLBCLs in both the CHOP (cyclophosphamide, vincristine, doxorubicin, and prednisone) and the rituximab (R)-CHOP eras. However, the underlying cause of this subtype disparity is poorly understood. Nevertheless, these clinical observations raise the possibility for an ABC-DLBCL-specific resistance mechanism that is directed toward 1 of the CHOP components and is inadequately addressed by rituximab. Here, we report that the main cytotoxic ingredient in CHOP, doxorubicin (Dox), has subtype-specific mechanisms of cytotoxicity in DLBCLs resulting from differences in the subcellular distribution pattern. Specifically, in cell line models of ABC-DLBCL, Dox is often enriched in the cytoplasm away from the nuclear DNA. As a result, Dox-induced cytotoxicity in ABC-DLBCLs is often dependent on oxidative stress, rather than DNA damage response. These findings are corroborated by gene signature analysis, which demonstrates that basal oxidative stress status predicts treatment outcome among patients with ABC-DLBCL, but not patients with GCB-DLBCL. In terms of redox-related resistance mechanism, our results suggest that STAT3 confers Dox resistance in ABC-DLBCLs by reinforcing an antioxidant program featuring upregulation of the SOD2 gene. Furthermore, a small-molecule STAT3 inhibitor synergizes with CHOP to trigger oxidative stress and kill ABC-DLBCL cells in preclinical models. These results provide a mechanistic basis for development of novel therapies that target either STAT3 or redox homeostasis to improve treatment outcomes for ABC-DLBCLs.
弥漫性大B细胞淋巴瘤(DLBCL)包含2种主要分子亚型,即生发中心B细胞样(GCB)和活化B细胞样(ABC)DLBCL。有充分的文献记载,在CHOP(环磷酰胺、长春新碱、阿霉素和泼尼松)以及利妥昔单抗(R)-CHOP时代,ABC-DLBCL病例的生存反应明显比GCB-DLBCL差。然而,这种亚型差异的根本原因尚不清楚。尽管如此,这些临床观察结果提示了一种针对CHOP成分之一的ABC-DLBCL特异性耐药机制的可能性,而利妥昔单抗对此机制的作用不足。在此,我们报告CHOP中的主要细胞毒性成分阿霉素(Dox)在DLBCL中具有亚型特异性的细胞毒性机制,这是由亚细胞分布模式的差异导致的。具体而言,在ABC-DLBCL的细胞系模型中,Dox通常富集在远离核DNA的细胞质中。因此,Dox诱导的ABC-DLBCL细胞毒性通常依赖于氧化应激,而不是DNA损伤反应。基因特征分析证实了这些发现,该分析表明基础氧化应激状态可预测ABC-DLBCL患者的治疗结果,但不能预测GCB-DLBCL患者的治疗结果。就氧化还原相关的耐药机制而言,我们的结果表明STAT3通过加强以SOD2基因上调为特征的抗氧化程序赋予ABC-DLBCL对Dox的耐药性。此外,在临床前模型中,一种小分子STAT3抑制剂与CHOP协同作用,引发氧化应激并杀死ABC-DLBCL细胞。这些结果为开发针对STAT3或氧化还原稳态的新型疗法以改善ABC-DLBCL的治疗结果提供了机制基础。