Suppr超能文献

利用电子临床数据预测早期住院再入院情况:早期再入院风险评分

Predicting Readmission at Early Hospitalization Using Electronic Clinical Data: An Early Readmission Risk Score.

作者信息

Tabak Ying P, Sun Xiaowu, Nunez Carlos M, Gupta Vikas, Johannes Richard S

机构信息

*Medical Informatics, Becton, Dickinson and Company †The Biomedical Informatics Research Center at San Diego State University, San Diego, CA ‡Harvard Medical School and Brigham and Women's Hospital, Boston, MA.

出版信息

Med Care. 2017 Mar;55(3):267-275. doi: 10.1097/MLR.0000000000000654.

Abstract

BACKGROUND

Identifying patients at high risk for readmission early during hospitalization may aid efforts in reducing readmissions. We sought to develop an early readmission risk predictive model using automated clinical data available at hospital admission.

METHODS

We developed an early readmission risk model using a derivation cohort and validated the model with a validation cohort. We used a published Acute Laboratory Risk of Mortality Score as an aggregated measure of clinical severity at admission and the number of hospital discharges in the previous 90 days as a measure of disease progression. We then evaluated the administrative data-enhanced model by adding principal and secondary diagnoses and other variables. We examined the c-statistic change when additional variables were added to the model.

RESULTS

There were 1,195,640 adult discharges from 70 hospitals with 39.8% male and the median age of 63 years (first and third quartile: 43, 78). The 30-day readmission rate was 11.9% (n=142,211). The early readmission model yielded a graded relationship of readmission and the Acute Laboratory Risk of Mortality Score and the number of previous discharges within 90 days. The model c-statistic was 0.697 with good calibration. When administrative variables were added to the model, the c-statistic increased to 0.722.

CONCLUSIONS

Automated clinical data can generate a readmission risk score early at hospitalization with fair discrimination. It may have applied value to aid early care transition. Adding administrative data increases predictive accuracy. The administrative data-enhanced model may be used for hospital comparison and outcome research.

摘要

背景

在住院期间尽早识别再入院高风险患者可能有助于降低再入院率。我们试图利用入院时可获取的自动化临床数据开发一种早期再入院风险预测模型。

方法

我们使用一个推导队列开发了早期再入院风险模型,并在一个验证队列中对该模型进行了验证。我们使用已发表的急性实验室死亡风险评分作为入院时临床严重程度的综合指标,并将前90天的出院次数作为疾病进展的指标。然后,我们通过添加主要和次要诊断及其他变量来评估行政数据增强模型。我们检查了向模型中添加其他变量时c统计量的变化。

结果

70家医院有1,195,640例成年患者出院,其中男性占39.8%,中位年龄为63岁(第一和第三四分位数:43, 78)。30天再入院率为11.9%(n = 142,211)。早期再入院模型得出了再入院与急性实验室死亡风险评分以及90天内既往出院次数之间的分级关系。该模型的c统计量为0.697,校准良好。当将行政变量添加到模型中时,c统计量增加到0.722。

结论

自动化临床数据可在住院早期生成具有一定区分度的再入院风险评分。它可能对协助早期护理过渡具有应用价值。添加行政数据可提高预测准确性。行政数据增强模型可用于医院比较和结局研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1636/5318151/68e7e8437919/mlr-55-267-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验