Suppr超能文献

一种用于环磷酸腺苷(cAMP)与MloK1结合结构域结合的定量模型。

A Quantitative Model for cAMP Binding to the Binding Domain of MloK1.

作者信息

Voß Béla, Seifert Reinhard, Kaupp U Benjamin, Grubmüller Helmut

机构信息

Department for Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.

Center of Advanced European Studies and Research, Bonn, Germany.

出版信息

Biophys J. 2016 Oct 18;111(8):1668-1678. doi: 10.1016/j.bpj.2016.09.014.

Abstract

Ligand-protein binding processes are essential in biological systems. A well-studied system is the binding of cyclic adenosine monophosphate to the cyclic nucleotide binding domain of the bacterial potassium channel MloK1. Strikingly, the measured on-rate for cyclic adenosine monophosphate binding is two orders of magnitude slower than a simple Smoluchowski diffusion model would suggest. To resolve this discrepancy and to characterize the ligand-binding path in structural and energetic terms, we calculated 1100 ligand-binding molecular dynamics trajectories and tested two scenarios: In the first scenario, the ligand transiently binds to the protein surface and then diffuses along the surface into the binding site. In the second scenario, only ligands that reach the protein surface in the vicinity of the binding site proceed into the binding site. Here, a binding funnel, which increasingly confines the translational as well as the rotational degrees of freedom, determines the binding pathways and limits the on-rate. From the simulations, we identified five surface binding states and calculated the rates between these surface binding states, the binding site, and the bulk. We find that the transient binding of the ligands to the surface binding states does not affect the on-rate, such that this effect alone cannot explain the observed low on-rate. Rather, by quantifying the translational and rotational degrees of freedom and by calculating the binding committor, our simulations confirmed the existence of a binding funnel as the main bottleneck. Direct binding via the binding funnel dominates the binding kinetics, and only ∼10% of all ligands proceed via the surface into the binding site. The simulations further predict an on-rate between 15 and 40μs(mol/l), which agrees with the measured on-rate.

摘要

配体 - 蛋白质结合过程在生物系统中至关重要。一个经过充分研究的系统是环磷酸腺苷与细菌钾通道MloK1的环核苷酸结合域的结合。令人惊讶的是,测得的环磷酸腺苷结合的结合速率比简单的斯莫卢霍夫斯基扩散模型所预测的慢两个数量级。为了解决这一差异并从结构和能量角度表征配体结合路径,我们计算了1100条配体结合分子动力学轨迹,并测试了两种情况:在第一种情况中,配体短暂地结合到蛋白质表面,然后沿表面扩散到结合位点。在第二种情况中,只有那些在结合位点附近到达蛋白质表面的配体才进入结合位点。在这里,一个逐渐限制平动和转动自由度的结合漏斗决定了结合路径并限制了结合速率。通过模拟,我们确定了五个表面结合状态,并计算了这些表面结合状态、结合位点和本体之间的速率。我们发现配体与表面结合状态的短暂结合不会影响结合速率,因此仅这种效应无法解释观察到的低结合速率。相反,通过量化平动和转动自由度并计算结合反应坐标,我们的模拟证实了存在一个作为主要瓶颈的结合漏斗。通过结合漏斗的直接结合主导了结合动力学,并且所有配体中只有约10%通过表面进入结合位点。模拟进一步预测结合速率在15至40μs(mol / l)之间,这与测得的结合速率一致。

相似文献

1
A Quantitative Model for cAMP Binding to the Binding Domain of MloK1.
Biophys J. 2016 Oct 18;111(8):1668-1678. doi: 10.1016/j.bpj.2016.09.014.
3
A KcsA/MloK1 chimeric ion channel has lipid-dependent ligand-binding energetics.
J Biol Chem. 2014 Apr 4;289(14):9535-46. doi: 10.1074/jbc.M113.543389. Epub 2014 Feb 10.
4
High-Resolution Cryoelectron Microscopy Structure of the Cyclic Nucleotide-Modulated Potassium Channel MloK1 in a Lipid Bilayer.
Structure. 2018 Jan 2;26(1):20-27.e3. doi: 10.1016/j.str.2017.11.012. Epub 2017 Dec 14.
5
Ligand binding and activation in a prokaryotic cyclic nucleotide-modulated channel.
J Mol Biol. 2007 Aug 31;371(5):1325-37. doi: 10.1016/j.jmb.2007.06.030. Epub 2007 Jun 15.
6
State-dependent cAMP binding to functioning HCN channels studied by patch-clamp fluorometry.
Biophys J. 2011 Mar 2;100(5):1226-32. doi: 10.1016/j.bpj.2011.01.034.
7
Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel.
J Gen Physiol. 2014 Jul;144(1):41-54. doi: 10.1085/jgp.201311145.
8
Role of Dynamics in the Autoinhibition and Activation of the Hyperpolarization-activated Cyclic Nucleotide-modulated (HCN) Ion Channels.
J Biol Chem. 2015 Jul 17;290(29):17642-17654. doi: 10.1074/jbc.M115.651877. Epub 2015 May 4.

引用本文的文献

1
Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601. doi: 10.1073/pnas.1816909116. Epub 2019 Mar 19.
2
Thermodynamics of camphor migration in cytochrome P450cam by atomistic simulations.
Sci Rep. 2017 Aug 10;7(1):7736. doi: 10.1038/s41598-017-07993-0.

本文引用的文献

1
Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems.
J Comput Chem. 1999 Jun;20(8):786-798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B.
2
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
4
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
6
Pathway and mechanism of drug binding to G-protein-coupled receptors.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13118-23. doi: 10.1073/pnas.1104614108. Epub 2011 Jul 21.
7
Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10184-9. doi: 10.1073/pnas.1103547108. Epub 2011 Jun 6.
8
Markov models of molecular kinetics: generation and validation.
J Chem Phys. 2011 May 7;134(17):174105. doi: 10.1063/1.3565032.
9
How does a drug molecule find its target binding site?
J Am Chem Soc. 2011 Jun 22;133(24):9181-3. doi: 10.1021/ja202726y. Epub 2011 May 13.
10
Structural insights into conformational changes of a cyclic nucleotide-binding domain in solution from Mesorhizobium loti K1 channel.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6121-6. doi: 10.1073/pnas.1015890108. Epub 2011 Mar 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验