Department of Forest Products Technology, Aalto University, P.O. Box 16300, 00076, Aalto, Finland.
Polymer and Composites Engineering group Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
Angew Chem Int Ed Engl. 2016 Nov 7;55(46):14455-14458. doi: 10.1002/anie.201606626. Epub 2016 Oct 20.
Despite the structural, load-bearing role of cellulose in the plant kingdom, countless efforts have been devoted to degrading this recalcitrant polysaccharide, particularly in the context of biofuels and renewable nanomaterials. Herein, we show how the exposure of plant-based fibers to HCl vapor results in rapid degradation with simultaneous crystallization. Because of the unchanged sample texture and the lack of mass transfer out of the substrate in the gas/solid system, the changes in the crystallinity could be reliably monitored. Furthermore, we describe the preparation of cellulose nanocrystals in high yields and with minimal water consumption. The study serves as a starting point for the solid-state tuning of the supramolecular properties of morphologically heterogeneous biological materials.
尽管纤维素在植物王国中具有结构和承载负荷的作用,但人们仍投入了无数努力来降解这种难以降解的多糖,尤其是在生物燃料和可再生纳米材料方面。在此,我们展示了植物纤维暴露于 HCl 蒸气中如何导致快速降解和同时结晶。由于在气/固体系中样品质地不变且没有质量从基质转移出来,因此可以可靠地监测结晶度的变化。此外,我们还描述了以高产率和最小用水量制备纤维素纳米晶体的方法。该研究为在固态下对形态不均匀的生物材料的超分子性质进行调整提供了一个起点。