Suppr超能文献

线性判别分析在水提物紫外-可见光谱法鉴别藏红花(番红花)产地中的应用

Geographical identification of saffron (Crocus sativus L.) by linear discriminant analysis applied to the UV-visible spectra of aqueous extracts.

机构信息

Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, L'Aquila, Italy.

Hortus Novus, Via Collepietro, 67100 L'Aquila, Italy.

出版信息

Food Chem. 2017 Mar 15;219:408-413. doi: 10.1016/j.foodchem.2016.09.169. Epub 2016 Sep 28.

Abstract

We attempted geographical classification of saffron using UV-visible spectroscopy, conventionally adopted for quality grading according to the ISO Normative 3632. We investigated 81 saffron samples produced in L'Aquila, Città della Pieve, Cascia, and Sardinia (Italy) and commercial products purchased in various supermarkets. Exploratory principal component analysis applied to the UV-vis spectra of saffron aqueous extracts revealed a clear differentiation of the samples belonging to different quality categories, but a poor separation according to the geographical origin of the spices. On the other hand, linear discriminant analysis based on 8 selected absorbance values, concentrated near 279, 305 and 328nm, allowed a good distinction of the spices coming from different sites. Under severe validation conditions (30% and 50% of saffron samples in the evaluation set), correct predictions were 85 and 83%, respectively.

摘要

我们尝试使用紫外可见光谱法对藏红花进行地理分类,该方法通常根据 ISO 规范 3632 用于根据质量等级进行分级。我们研究了 81 个产自拉奎拉、奇塔德拉皮耶韦、卡斯西亚和撒丁岛(意大利)的藏红花样本以及在不同超市购买的商业产品。对藏红花水提物的紫外可见光谱进行探索性主成分分析,结果表明,不同质量等级的样本有明显的区分,但根据香料的地理来源,分离效果不佳。另一方面,基于 8 个选定吸光度值(集中在 279、305 和 328nm 附近)的线性判别分析,能够很好地区分来自不同产地的香料。在严格的验证条件下(评估集中有 30%和 50%的藏红花样本),正确预测率分别为 85%和 83%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验