Suppr超能文献

软骨细胞特化与分化的转录调控

Transcriptional control of chondrocyte specification and differentiation.

作者信息

Liu Chia-Feng, Samsa William E, Zhou Guang, Lefebvre Véronique

机构信息

Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.

Department of Orthopaedics, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Semin Cell Dev Biol. 2017 Feb;62:34-49. doi: 10.1016/j.semcdb.2016.10.004. Epub 2016 Oct 19.

Abstract

A milestone in the evolutionary emergence of vertebrates was the invention of cartilage, a tissue that has key roles in modeling, protecting and complementing the bony skeleton. Cartilage is elaborated and maintained by chondrocytes. These cells derive from multipotent skeletal progenitors and they perform highly specialized functions as they proceed through sequential lineage commitment and differentiation steps. They form cartilage primordia, the primary skeleton of the embryo. They then transform these primordia either into cartilage growth plates, temporary drivers of skeletal elongation and endochondral ossification, or into permanent tissues, namely articular cartilage. Chondrocyte fate decisions and differentiated activities are controlled by numerous extrinsic and intrinsic cues, and they are implemented at the gene expression level by transcription factors. The latter are the focus of this review. Meritorious efforts from many research groups have led over the last two decades to the identification of dozens of key chondrogenic transcription factors. These regulators belong to all types of transcription factor families. Some have master roles at one or several differentiation steps. They include SOX9 and RUNX2/3. Others decisively assist or antagonize the activities of these masters. They include TWIST1, SOX5/6, and MEF2C/D. Many more have tissue-patterning roles and regulate cell survival, proliferation and the pace of cell differentiation. They include, but are not limited to, homeodomain-containing proteins and growth factor signaling mediators. We here review current knowledge of all these factors, one superclass, class, and family at a time. We then compile all knowledge into transcriptional networks. We also identify remaining gaps in knowledge and directions for future research to fill these gaps and thereby provide novel insights into cartilage disease mechanisms and treatment options.

摘要

脊椎动物进化出现过程中的一个里程碑是软骨的形成,软骨是一种在骨骼塑形、保护和补充硬骨骨骼方面发挥关键作用的组织。软骨由软骨细胞构建和维持。这些细胞源自多能骨骼祖细胞,在经历一系列谱系定向和分化步骤时,它们执行高度专业化的功能。它们形成软骨原基,即胚胎的初级骨骼。然后,它们将这些原基转化为软骨生长板,这是骨骼伸长和软骨内骨化的临时驱动因素,或者转化为永久性组织,即关节软骨。软骨细胞的命运决定和分化活动受众多外在和内在信号的控制,并通过转录因子在基因表达水平上得以实现。转录因子是本综述的重点。在过去二十年中,许多研究团队付出了卓有成效的努力,已鉴定出数十种关键的软骨生成转录因子。这些调节因子属于所有类型的转录因子家族。有些在一个或几个分化步骤中起主导作用,包括SOX9和RUNX2/3等。其他一些则决定性地协助或拮抗这些主导因子的活性,包括TWIST1、SOX5/6和MEF2C/D等。还有更多转录因子具有组织模式形成作用,并调节细胞存活、增殖和细胞分化的速度,包括但不限于含同源结构域的蛋白质和生长因子信号传导介质。我们在此一次回顾一类、一个家族的所有这些因子的现有知识。然后将所有知识整合到转录网络中。我们还确定了知识上的剩余空白以及未来研究填补这些空白的方向,从而为软骨疾病机制和治疗方案提供新的见解。

相似文献

1
Transcriptional control of chondrocyte specification and differentiation.
Semin Cell Dev Biol. 2017 Feb;62:34-49. doi: 10.1016/j.semcdb.2016.10.004. Epub 2016 Oct 19.
2
Transcriptional control of chondrocyte fate and differentiation.
Birth Defects Res C Embryo Today. 2005 Sep;75(3):200-12. doi: 10.1002/bdrc.20048.
3
SOX9 and the many facets of its regulation in the chondrocyte lineage.
Connect Tissue Res. 2017 Jan;58(1):2-14. doi: 10.1080/03008207.2016.1183667. Epub 2016 Apr 29.
5
Chondrocyte proliferation and differentiation.
Endocr Dev. 2011;21:1-11. doi: 10.1159/000328081. Epub 2011 Aug 22.
6
Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
Int J Biochem Cell Biol. 2008;40(1):46-62. doi: 10.1016/j.biocel.2007.06.009. Epub 2007 Jun 29.
9
Molecular differentiation between osteophytic and articular cartilage--clues for a transient and permanent chondrocyte phenotype.
Osteoarthritis Cartilage. 2012 Feb;20(2):162-71. doi: 10.1016/j.joca.2011.12.004. Epub 2011 Dec 13.

引用本文的文献

1
Bath: a Bayesian approach to analyze epigenetic transitions reveals a dual role of H3K27me3 in chondrogenesis.
Epigenetics Chromatin. 2025 Jun 27;18(1):38. doi: 10.1186/s13072-025-00594-6.
2
Unraveling the Role of N6-Methylation Modification: From Bone Biology to Osteoporosis.
Int J Med Sci. 2025 May 8;22(11):2545-2559. doi: 10.7150/ijms.108763. eCollection 2025.
4
Chondrogenesis in primitive tracheal neocartilage: insights from 3D-printed silicone grafts in a large-scale animal model.
Am J Transl Res. 2025 Feb 15;17(2):856-867. doi: 10.62347/AFVA1238. eCollection 2025.
5
SOX9: a key transcriptional regulator in organ fibrosis.
Front Pharmacol. 2025 Feb 5;16:1507282. doi: 10.3389/fphar.2025.1507282. eCollection 2025.
6
Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders.
Stem Cell Res Ther. 2024 Oct 29;15(1):386. doi: 10.1186/s13287-024-04011-9.
7
Antihypertensive drug-associated adverse events in osteoarthritis: a study of a large real-world sample based on the FAERS database.
Front Pharmacol. 2024 Sep 2;15:1404427. doi: 10.3389/fphar.2024.1404427. eCollection 2024.
8
Sox9: A potential regulator of cancer stem cells in osteosarcoma.
Open Med (Wars). 2024 Jul 5;19(1):20240995. doi: 10.1515/med-2024-0995. eCollection 2024.
10
Pre-hypertrophic chondrogenic enhancer landscape of limb and axial skeleton development.
Nat Commun. 2024 Jun 6;15(1):4820. doi: 10.1038/s41467-024-49203-2.

本文引用的文献

1
AP-1 family members act with Sox9 to promote chondrocyte hypertrophy.
Development. 2016 Aug 15;143(16):3012-23. doi: 10.1242/dev.134502. Epub 2016 Jul 28.
2
Signaling pathways regulating cartilage growth plate formation and activity.
Semin Cell Dev Biol. 2017 Feb;62:3-15. doi: 10.1016/j.semcdb.2016.07.008. Epub 2016 Jul 11.
3
Cell fate control by pioneer transcription factors.
Development. 2016 Jun 1;143(11):1833-7. doi: 10.1242/dev.133900.
4
Hox genes and evolution.
F1000Res. 2016 May 10;5. doi: 10.12688/f1000research.7663.1. eCollection 2016.
5
Characterization of Kidney and Skeleton Phenotypes of Mice Double Heterozygous for Foxc1 and Foxc2.
Cells Tissues Organs. 2016;201(5):380-9. doi: 10.1159/000445027. Epub 2016 May 19.
6
HES factors regulate specific aspects of chondrogenesis and chondrocyte hypertrophy during cartilage development.
J Cell Sci. 2016 Jun 1;129(11):2145-55. doi: 10.1242/jcs.181271. Epub 2016 May 9.
7
ATF3 deficiency in chondrocytes alleviates osteoarthritis development.
J Pathol. 2016 Aug;239(4):426-37. doi: 10.1002/path.4739. Epub 2016 Jun 14.
8
The role of Nkx3.2 in chondrogenesis.
Front Biol (Beijing). 2014 Oct;9(5):376-381. doi: 10.1007/s11515-014-1321-3. Epub 2014 Jul 7.
9
Sp7/Osterix Is Restricted to Bone-Forming Vertebrates where It Acts as a Dlx Co-factor in Osteoblast Specification.
Dev Cell. 2016 May 9;37(3):238-53. doi: 10.1016/j.devcel.2016.04.002. Epub 2016 Apr 28.
10
The unfolded protein response in skeletal development and homeostasis.
Cell Mol Life Sci. 2016 Aug;73(15):2851-69. doi: 10.1007/s00018-016-2178-1. Epub 2016 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验