Wang Wei, Zhou Hongxian, Yang Hong, Cui Min
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China.
College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan, Changde, 415000 Hunan China ; Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan, 430070 Hubei China ; National R&D Branch Center for Conventional Freshwater Fish Processing (Wuhan), Wuhan, 430070 Hubei China ; Aquatic Product Engineering and Technology Research Center of Hubei Province, Wuhan, 430070 Hubei China.
J Food Sci Technol. 2016 Sep;53(9):3624-3631. doi: 10.1007/s13197-016-2350-5. Epub 2016 Oct 1.
The objective of this study was to evaluate the effects of different salts (NaF, NaCl, NaBr, NaI, KSO, KCl, KNO, KSCN, LiCl) on freeze-thaw stability, gel strength and rheological properties of potato starch. Addition of the structure-making (salting-out) ions, such as F and SO, decreased freeze-thaw stability and increased gel strength, maximal storage modulus (G') and maximal loss modulus (G″) of potato starch, due to a stronger three-dimensional network by promoting the starch retrogradation and inhibiting starch gelatinization. Shear stress versus shear rate of all samples at 25 °C was well fitted to the simple power-law model with high determination coefficients (R = 0.9863-0.9990). Flow behavior index (n), consistency index (K) and apparent viscosities increased with adding salting-out ions. However, the structure-breaking (salting-in) ions had reverse effects on freeze-thaw stability, gel strength and rheological characteristics of potato starch. The addition of structure-breaking ions, such as Br, NO, I, SCN, Na and Li, decreased gel strength, G' and G″ values and increased freeze-thaw stability. Salts could significantly influence on the retrogradation of potato starch, generally following the ion order: F > SO > Cl > Br > NO > I > SCN for anions and K > Na > Li for cations, consistent with the Hofmeister series.
本研究的目的是评估不同盐类(氟化钠、氯化钠、溴化钠、碘化钠、硫酸钾、氯化钾、硝酸钾、硫氰酸钾、氯化锂)对马铃薯淀粉冻融稳定性、凝胶强度和流变学特性的影响。添加诸如氟离子和硫酸根离子等促结构形成(盐析)离子会降低马铃薯淀粉的冻融稳定性,并提高其凝胶强度、最大储能模量(G')和最大损耗模量(G″),这是由于通过促进淀粉回生和抑制淀粉糊化形成了更强的三维网络结构。所有样品在25℃下的剪切应力与剪切速率关系均能很好地拟合简单幂律模型,决定系数较高(R = 0.9863 - 0.9990)。随着盐析离子的添加,流动行为指数(n)、稠度指数(K)和表观粘度增加。然而,促结构破坏(盐溶)离子对马铃薯淀粉的冻融稳定性、凝胶强度和流变学特性有相反的影响。添加诸如溴离子、硝酸根离子、碘离子、硫氰根离子、钠离子和锂离子等促结构破坏离子会降低凝胶强度、G' 和G″ 值,并提高冻融稳定性。盐类可显著影响马铃薯淀粉的回生,一般遵循阴离子的离子顺序:氟离子 > 硫酸根离子 > 氯离子 > 溴离子 > 硝酸根离子 > 碘离子 > 硫氰根离子,以及阳离子的离子顺序:钾离子 > 钠离子 > 锂离子,这与霍夫迈斯特序列一致。