Bunesova Vera, Lacroix Christophe, Schwab Clarissa
Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland.
Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic.
BMC Microbiol. 2016 Oct 26;16(1):248. doi: 10.1186/s12866-016-0867-4.
Human milk oligosaccharides (HMOs) are one of the major glycan source of the infant gut microbiota. The two species that predominate the infant bifidobacteria community, Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum, possess an arsenal of enzymes including α-fucosidases, sialidases, and β-galactosidases to metabolise HMOs. Recently bifidobacteria were obtained from the stool of six month old Kenyan infants including species such as Bifidobacterium kashiwanohense, and Bifidobacterium pseudolongum that are not frequently isolated from infant stool. The aim of this study was to characterize HMOs utilization by these isolates. Strains were grown in presence of 2'-fucosyllactose (2'-FL), 3'-fucosyllactose (3'-FL), 3'-sialyl-lactose (3'-SL), 6'-sialyl-lactose (6'-SL), and Lacto-N-neotetraose (LNnT). We further investigated metabolites formed during L-fucose and fucosyllactose utilization, and aimed to identify genes and pathways involved through genome comparison.
Bifidobacterium longum subsp. infantis isolates, Bifidobacterium longum subsp. suis BSM11-5 and B. kashiwanohense strains grew in the presence of 2'-FL and 3'- FL. All B. longum isolates utilized the L-fucose moiety, while B. kashiwanohense accumulated L-fucose in the supernatant. 1,2-propanediol (1,2-PD) was the major metabolite from L-fucose fermentation, and was formed in equimolar amounts by B. longum isolates. Alpha-fucosidases were detected in all strains that degraded fucosyllactose. B. longum subsp. infantis TPY11-2 harboured four α-fucosidases with 95-99 % similarity to the type strain. B. kashiwanohense DSM 21854 and PV20-2 possessed three and one α-fucosidase, respectively. The two α-fucosidases of B. longum subsp. suis were 78-80 % similar to B. longum subsp. infantis and were highly similar to B. kashiwanohense α-fucosidases (95-99 %). The genomes of B. longum strains that were capable of utilizing L-fucose harboured two gene regions that encoded enzymes predicted to metabolize L-fucose to L-lactaldehyde, the precursor of 1,2-PD, via non-phosphorylated intermediates.
Here we observed that the ability to utilize fucosyllactose is a trait of various bifidobacteria species. For the first time, strains of B. longum subsp. infantis and an isolate of B. longum subsp. suis were shown to use L-fucose to form 1,2-PD. As 1,2-PD is a precursor for intestinal propionate formation, bifidobacterial L-fucose utilization may impact intestinal short chain fatty acid balance. A L-fucose utilization pathway for bifidobacteria is suggested.
人乳寡糖(HMOs)是婴儿肠道微生物群的主要聚糖来源之一。在婴儿双歧杆菌群落中占主导地位的两个物种,即婴儿双歧杆菌长亚种和两歧双歧杆菌,拥有包括α-岩藻糖苷酶、唾液酸酶和β-半乳糖苷酶在内的一系列酶来代谢HMOs。最近,从6个月大的肯尼亚婴儿粪便中分离出双歧杆菌,包括一些不常从婴儿粪便中分离出的物种,如柏原双歧杆菌和假长双歧杆菌。本研究的目的是表征这些分离株对HMOs的利用情况。将菌株在2'-岩藻糖基乳糖(2'-FL)、3'-岩藻糖基乳糖(3'-FL)、3'-唾液酸乳糖(3'-SL)、6'-唾液酸乳糖(6'-SL)和乳糖-N-新四糖(LNnT)存在的条件下培养。我们进一步研究了L-岩藻糖和岩藻糖基乳糖利用过程中形成的代谢产物,并旨在通过基因组比较鉴定相关基因和途径。
婴儿双歧杆菌长亚种分离株、猪双歧杆菌长亚种BSM11-5和柏原双歧杆菌菌株在2'-FL和3'-FL存在的情况下生长。所有长双歧杆菌分离株都利用L-岩藻糖部分,而柏原双歧杆菌在上清液中积累L-岩藻糖。1,2-丙二醇(1,2-PD)是L-岩藻糖发酵产生的主要代谢产物,长双歧杆菌分离株以等摩尔量产生。在所有降解岩藻糖基乳糖的菌株中都检测到了α-岩藻糖苷酶。婴儿双歧杆菌长亚种TPY11-2含有四种α-岩藻糖苷酶,与模式菌株的相似性为95-99%。柏原双歧杆菌DSM 21854和PV20-2分别拥有三种和一种α-岩藻糖苷酶。猪双歧杆菌长亚种的两种α-岩藻糖苷酶与婴儿双歧杆菌长亚种的相似性为78-80%,与柏原双歧杆菌的α-岩藻糖苷酶高度相似(95-99%)。能够利用L-岩藻糖的长双歧杆菌菌株的基因组含有两个基因区域,这些区域编码的酶预计可通过非磷酸化中间体将L-岩藻糖代谢为L-乳醛,L-乳醛是1,2-PD的前体。
在这里我们观察到利用岩藻糖基乳糖的能力是多种双歧杆菌物种的一个特征。首次证明婴儿双歧杆菌长亚种菌株和猪双歧杆菌长亚种的一个分离株利用L-岩藻糖形成1,2-PD。由于1,2-PD是肠道丙酸形成的前体,双歧杆菌对L-岩藻糖的利用可能会影响肠道短链脂肪酸平衡。提出了双歧杆菌的L-岩藻糖利用途径。