Suppr超能文献

相似文献

1
Archaea catalyze iron-dependent anaerobic oxidation of methane.
Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):12792-12796. doi: 10.1073/pnas.1609534113. Epub 2016 Oct 24.
2
Community Composition and Ultrastructure of a Nitrate-Dependent Anaerobic Methane-Oxidizing Enrichment Culture.
Appl Environ Microbiol. 2018 Jan 17;84(3). doi: 10.1128/AEM.02186-17. Print 2018 Feb 1.
3
Anaerobic oxidation of methane: an "active" microbial process.
Microbiologyopen. 2015 Feb;4(1):1-11. doi: 10.1002/mbo3.232. Epub 2014 Dec 22.
4
Nitrate- and nitrite-dependent anaerobic oxidation of methane.
Environ Microbiol Rep. 2016 Dec;8(6):941-955. doi: 10.1111/1758-2229.12487. Epub 2016 Nov 9.
5
Active pathways of anaerobic methane oxidation across contrasting riverbeds.
ISME J. 2019 Mar;13(3):752-766. doi: 10.1038/s41396-018-0302-y. Epub 2018 Oct 30.
6
Enrichment of anaerobic nitrate-dependent methanotrophic 'Candidatus Methanoperedens nitroreducens' archaea from an Italian paddy field soil.
Appl Microbiol Biotechnol. 2017 Sep;101(18):7075-7084. doi: 10.1007/s00253-017-8416-0. Epub 2017 Aug 4.
7
Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage.
Nature. 2013 Aug 29;500(7464):567-70. doi: 10.1038/nature12375. Epub 2013 Jul 28.
8
Anaerobic methane oxidation coupled to manganese reduction by members of the Methanoperedenaceae.
ISME J. 2020 Apr;14(4):1030-1041. doi: 10.1038/s41396-020-0590-x. Epub 2020 Jan 27.
9
Microbiological and environmental significance of metal-dependent anaerobic oxidation of methane.
Sci Total Environ. 2018 Jan 1;610-611:759-768. doi: 10.1016/j.scitotenv.2017.08.140. Epub 2017 Aug 19.
10
The hunt for the most-wanted chemolithoautotrophic spookmicrobes.
FEMS Microbiol Ecol. 2018 Jun 1;94(6). doi: 10.1093/femsec/fiy064.

引用本文的文献

2
Metal-driven anaerobic oxidation of methane and the Sturtian deglaciation.
Nat Commun. 2025 Aug 6;16(1):7249. doi: 10.1038/s41467-025-62622-z.
3
Nitrogen Redox Controls on Greenhouse Gas Production in Yedoma Taliks.
Glob Chang Biol. 2025 Jul;31(7):e70356. doi: 10.1111/gcb.70356.
4
Crustal faulting drives biological redox cycling in the deep subsurface.
Sci Adv. 2025 Jul 18;11(29):eadx5372. doi: 10.1126/sciadv.adx5372.
6
Beyond methane consumption: exploring the potential of methanotrophic bacteria to produce secondary metabolites.
ISME Commun. 2025 Feb 13;5(1):ycaf030. doi: 10.1093/ismeco/ycaf030. eCollection 2025 Jan.
7
Duration of O Exposure Determines Dominance of Fe vs CH Production in Tropical Forest Soils.
Environ Sci Technol. 2025 Mar 11;59(9):4469-4481. doi: 10.1021/acs.est.4c12329. Epub 2025 Feb 28.
8
Vertical distribution of methanotrophic archaea in an iron-rich groundwater discharge zone.
PLoS One. 2025 Feb 24;20(2):e0319069. doi: 10.1371/journal.pone.0319069. eCollection 2025.
9
Drivers of methane-cycling archaeal abundances, community structure, and catabolic pathways in continental margin sediments.
Front Microbiol. 2025 Feb 6;16:1550762. doi: 10.3389/fmicb.2025.1550762. eCollection 2025.
10
Thermodynamics Underpinning the Microbial Community-Level Nitrogen Energy Metabolism.
Environ Microbiol. 2025 Feb;27(2):e70055. doi: 10.1111/1462-2920.70055.

本文引用的文献

1
Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction.
Science. 2016 Feb 12;351(6274):703-7. doi: 10.1126/science.aad7154.
2
A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea.
Front Microbiol. 2015 Dec 18;6:1423. doi: 10.3389/fmicb.2015.01423. eCollection 2015.
3
Single cell activity reveals direct electron transfer in methanotrophic consortia.
Nature. 2015 Oct 22;526(7574):531-5. doi: 10.1038/nature15512. Epub 2015 Sep 16.
4
Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis.
Front Microbiol. 2015 May 12;6:439. doi: 10.3389/fmicb.2015.00439. eCollection 2015.
5
Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments.
ISME J. 2015 Nov;9(11):2400-12. doi: 10.1038/ismej.2015.50. Epub 2015 Apr 14.
6
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
Environ Sci Technol. 2015 Jan 6;49(1):277-83. doi: 10.1021/es503663z. Epub 2014 Dec 9.
7
Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria.
Appl Microbiol Biotechnol. 2014 Dec;98(24):10211-21. doi: 10.1007/s00253-014-5936-8. Epub 2014 Jul 24.
8
Early diagenetic processes generate iron and manganese oxide layers in the sediments of Lake Baikal, Siberia.
Environ Sci Process Impacts. 2014 Apr;16(4):879-89. doi: 10.1039/c3em00676j.
10
Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways.
ISME J. 2014 May;8(5):1069-78. doi: 10.1038/ismej.2013.212. Epub 2013 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验