Ilton Mark, Couchman Miles M P, Gerbelot Cedric, Benzaquen Michael, Fowler Paul D, Stone Howard A, Raphaël Elie, Dalnoki-Veress Kari, Salez Thomas
Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Laboratoire de Physico-Chimie Théorique, UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France.
Phys Rev Lett. 2016 Oct 14;117(16):167801. doi: 10.1103/PhysRevLett.117.167801. Epub 2016 Oct 11.
We report on the capillary-driven leveling of a topographical perturbation at the surface of a freestanding liquid nanofilm. The width of a stepped surface profile is found to evolve as the square root of time. The hydrodynamic model is in excellent agreement with the experimental data. In addition to exhibiting an analogy with diffusive processes, this novel system serves as a precise nanoprobe for the rheology of liquids at interfaces in a configuration that avoids substrate effects.
我们报告了关于自支撑液体纳米薄膜表面地形扰动的毛细管驱动平整现象。发现阶梯状表面轮廓的宽度随时间的平方根演变。流体动力学模型与实验数据高度吻合。除了展现出与扩散过程的相似性外,这个新系统还作为一种精确的纳米探针,用于在避免基底效应的配置下研究液体在界面处的流变学。