Suppr超能文献

使用随机森林分类器的全自动中风组织估计(FASTER)。

Fully automated stroke tissue estimation using random forest classifiers (FASTER).

作者信息

McKinley Richard, Häni Levin, Gralla Jan, El-Koussy M, Bauer S, Arnold M, Fischer U, Jung S, Mattmann Kaspar, Reyes Mauricio, Wiest Roland

机构信息

1 Support Center for Advanced Neuroimaging (SCAN), Institute for Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland.

2 Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland.

出版信息

J Cereb Blood Flow Metab. 2017 Aug;37(8):2728-2741. doi: 10.1177/0271678X16674221. Epub 2016 Jan 1.

Abstract

Several clinical trials have recently proven the efficacy of mechanical thrombectomy for treating ischemic stroke, within a six-hour window for therapy. To move beyond treatment windows and toward personalized risk assessment, it is essential to accurately identify the extent of tissue-at-risk ("penumbra"). We introduce a fully automated method to estimate the penumbra volume using multimodal MRI (diffusion-weighted imaging, a T2w- and T1w contrast-enhanced sequence, and dynamic susceptibility contrast perfusion MRI). The method estimates tissue-at-risk by predicting tissue damage in the case of both persistent occlusion and of complete recanalization. When applied to 19 test cases with a thrombolysis in cerebral infarction grading of 1-2a, mean overestimation of final lesion volume was 30 ml, compared with 121 ml for manually corrected thresholding. Predicted tissue-at-risk volume was positively correlated with final lesion volume ( p < 0.05). We conclude that prediction of tissue damage in the event of either persistent occlusion or immediate and complete recanalization, from spatial features derived from MRI, provides a substantial improvement beyond predefined thresholds. It may serve as an alternative method for identifying tissue-at-risk that may aid in treatment selection in ischemic stroke.

摘要

最近的几项临床试验已证明机械取栓术在治疗缺血性中风方面的疗效,治疗时间窗为6小时。为了突破治疗时间窗并转向个性化风险评估,准确识别风险组织(“半暗带”)的范围至关重要。我们引入了一种全自动方法,使用多模态磁共振成像(扩散加权成像、T2加权和T1加权对比增强序列以及动态磁敏感对比灌注磁共振成像)来估计半暗带体积。该方法通过预测持续闭塞和完全再通情况下的组织损伤来估计风险组织。应用于19例脑梗死溶栓分级为1-2a的测试病例时,最终病变体积的平均高估为30毫升,而手动校正阈值法为121毫升。预测的风险组织体积与最终病变体积呈正相关(p<0.05)。我们得出结论,根据磁共振成像得出的空间特征预测持续闭塞或立即完全再通情况下的组织损伤,比预定义阈值有了实质性改进。它可作为识别风险组织的替代方法,有助于缺血性中风的治疗选择。

相似文献

1
Fully automated stroke tissue estimation using random forest classifiers (FASTER).
J Cereb Blood Flow Metab. 2017 Aug;37(8):2728-2741. doi: 10.1177/0271678X16674221. Epub 2016 Jan 1.
2
The Role of the Signal Intensity Ratio on Fluid-Attenuated Inversion Recovery in Stroke Patients Achieving Successful Recanalization with Endovascular Treatment.
J Stroke Cerebrovasc Dis. 2017 Jul;26(7):1528-1534. doi: 10.1016/j.jstrokecerebrovasdis.2017.02.037. Epub 2017 Mar 22.
3
Trial design and reporting standards for intra-arterial cerebral thrombolysis for acute ischemic stroke.
Stroke. 2003 Aug;34(8):e109-37. doi: 10.1161/01.STR.0000082721.62796.09. Epub 2003 Jul 17.
4
Evaluation of hyperacute infarct volume using ASPECTS and brain CT perfusion core volume.
Neurology. 2017 Jun 13;88(24):2248-2253. doi: 10.1212/WNL.0000000000004028. Epub 2017 May 17.
5
Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms.
J Cereb Blood Flow Metab. 2017 Aug;37(8):3065-3076. doi: 10.1177/0271678X16683692. Epub 2016 Jan 1.
6
Assessment of veins in T2*-weighted MR angiography predicts infarct growth in hyperacute ischemic stroke.
PLoS One. 2018 Apr 4;13(4):e0195554. doi: 10.1371/journal.pone.0195554. eCollection 2018.
8
Factors that determine penumbral tissue loss in acute ischaemic stroke.
Brain. 2013 Dec;136(Pt 12):3554-60. doi: 10.1093/brain/awt246. Epub 2013 Sep 24.

引用本文的文献

1
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.
Biomed Eng Lett. 2025 Feb 17;15(3):467-488. doi: 10.1007/s13534-025-00462-y. eCollection 2025 May.
2
Artificial intelligence in stroke risk assessment and management via retinal imaging.
Front Comput Neurosci. 2025 Feb 17;19:1490603. doi: 10.3389/fncom.2025.1490603. eCollection 2025.
3
A 25-Year Retrospective of the Use of AI for Diagnosing Acute Stroke: Systematic Review.
J Med Internet Res. 2024 Sep 10;26:e59711. doi: 10.2196/59711.
4
Prediction of tissue outcome in acute ischemic stroke based on single-phase CT angiography at admission.
Front Neurol. 2024 Mar 19;15:1330497. doi: 10.3389/fneur.2024.1330497. eCollection 2024.
6
Tissue Outcome Prediction in Patients with Proximal Vessel Occlusion and Mechanical Thrombectomy Using Logistic Models.
Transl Stroke Res. 2024 Aug;15(4):739-749. doi: 10.1007/s12975-023-01160-6. Epub 2023 May 30.
8
Performance of Machine Learning for Tissue Outcome Prediction in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.
Front Neurol. 2022 Jul 8;13:910259. doi: 10.3389/fneur.2022.910259. eCollection 2022.
9
Computational Approaches for Acute Traumatic Brain Injury Image Recognition.
Front Neurol. 2022 Mar 9;13:791816. doi: 10.3389/fneur.2022.791816. eCollection 2022.
10
Machine learning based analysis of stroke lesions on mouse tissue sections.
J Cereb Blood Flow Metab. 2022 Aug;42(8):1463-1477. doi: 10.1177/0271678X221083387. Epub 2022 Feb 25.

本文引用的文献

1
Deep Learning of Tissue Fate Features in Acute Ischemic Stroke.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2015 Nov;2015:1316-1321. doi: 10.1109/BIBM.2015.7359869. Epub 2015 Dec 17.
2
Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization.
J Cereb Blood Flow Metab. 2015 Sep;35(9):1397-405. doi: 10.1038/jcbfm.2015.144. Epub 2015 Jul 8.
3
Thrombectomy within 8 hours after symptom onset in ischemic stroke.
N Engl J Med. 2015 Jun 11;372(24):2296-306. doi: 10.1056/NEJMoa1503780. Epub 2015 Apr 17.
4
Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke.
N Engl J Med. 2015 Jun 11;372(24):2285-95. doi: 10.1056/NEJMoa1415061. Epub 2015 Apr 17.
5
Randomized assessment of rapid endovascular treatment of ischemic stroke.
N Engl J Med. 2015 Mar 12;372(11):1019-30. doi: 10.1056/NEJMoa1414905. Epub 2015 Feb 11.
6
Endovascular therapy for ischemic stroke with perfusion-imaging selection.
N Engl J Med. 2015 Mar 12;372(11):1009-18. doi: 10.1056/NEJMoa1414792. Epub 2015 Feb 11.
7
Towards automatic MRI volumetry for treatment selection in acute ischemic stroke patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:1521-4. doi: 10.1109/EMBC.2014.6943891.
8
A randomized trial of intraarterial treatment for acute ischemic stroke.
N Engl J Med. 2015 Jan 1;372(1):11-20. doi: 10.1056/NEJMoa1411587. Epub 2014 Dec 17.
9
Patient-specific semi-supervised learning for postoperative brain tumor segmentation.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):714-21. doi: 10.1007/978-3-319-10404-1_89.
10
Multi-modal glioblastoma segmentation: man versus machine.
PLoS One. 2014 May 7;9(5):e96873. doi: 10.1371/journal.pone.0096873. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验